How to Tell Your Advisor That You're Leaving Academia

28. August 2014

Jena Pitman-Leung, Ph.D. 

This post is based on content that has already appeared on the Propel Careers website. It is reproduced here with the author’s kind permission.

Many people enter into a Ph.D. program or postdoctoral fellowship thinking that they’ll be in academia forever. But for about 70 percent of trainees, this plan changes along the way. Sometimes it happens over a long period of time, and sometimes it happens quickly. Either way, their advisor is usually the last person to find out. Despite the changing culture, many advisors simply do not want their trainees to leave academia.

One of the questions that I've been frequently asked since joining Propel Careers is, “How do I tell my advisor I'm leaving academia?” For many people, the anticipation of this conversation is worse than any other conversation with their advisor.

I wish I could remember how I told my postdoc advisor, but I was too flustered to remember the details. I do, however, remember the outcome–thankfully, I received understanding and support. I've had a number of years to look back on this experience and talk to others who've gone through it, and I’ve identified a few tactics that made this conversation easier.

Give enough notice
When you decide to leave academia, try to give your advisor enough notice to make him or her feel comfortable. Most Ph.D. students begin looking for a postdoc position about a year before graduating, so this would be a good time to tell them you plan to look for a different job.

Have a research plan in place
Present your advisor with an exit plan to ease any worries about you leaving the lab with unfinished experiments. Create a list of work left to do, along with a timeline and who you will hand tasks off to, if necessary. Include as much detail as possible!

Have a future plan in place
You may not know exactly what you want to do after leaving the lab, but hopefully you have an idea. Once you choose a career path, allow yourself enough time to assess your skillset and build any skills needed to transition into your new role. If this requires some time out of the lab, tell your advisor what your plans are, why they are important to your career development and how you will build the skills you need without interfering with finishing your research.

Don't present your choice as a bad thing
You may feel guilty or like you are disappointing your advisor. Even if you get a less-than-supportive response, it is important to stay positive. Present the news as an exciting career transition, NOT as a backup plan. The more self-reflection you do ahead of time and the more confident you are in your decision, the easier this will be. It's okay if it takes a little time to get to this point–just remember, this is your career, and you are in charge.

Make sure they know you value your training
Ph.D. and postdoc training is incredibly valuable. Even if it's not the experience you hoped it would be, you can’t get through without learning something. You want your advisor to feel that the training you received will not be wasted. Your technical abilities, communication skills, ability to collaborate and work with others, train junior colleagues, grasp complicated questions, think critically and see solutions are skills that will be useful in careers outside of academia.

Although research trainee success is still defined by many granting institutions as “success within academia,” this is changing. As you progress in your career, check in periodically with your advisor to update him or her on your successes. This way, you can be included in faculty boasting as the former trainee who “helped discover the cure for cancer while working on a team at X pharma,” or the former trainee who “developed a medical device used to diagnose X disease.” As a bonus for doing this, you may make it easier for your peers to have their own discussions with your mentor!

Jena Pitman-Leung, Ph.D., is a Career Development Consultant at Propel Careers and has been with Propel Careers since August, 2013. During her graduate studies at Northwestern University and postdoctoral studies at the University of Massachusetts Medical School she was the primary mentor of over a dozen undergraduate and graduate students; providing career advice, and training them to be independent scientists. Prior to joining Propel, Jena worked as a consultant at a Boston-area firm specializing in fatigue risk management in 24/7 industries.

 

Academic Careers, Career Path, Communication Skills, Nontraditional Science Careers, Ph.D. Perspectives, Postdocs , , , , , ,

Pursuing Science in South Africa

19. June 2014

Yaseera Ismail

I have worked and studied at South African universities since beginning my undergraduate degree. I started my research career at the Council for Scientific and Industrial Research (CSIR), which is one of 10 national research facilities, and I am currently based in the Quantum Research Group at the University of KwaZulu-Natal (UKZN). Here, I will reflect on some of my experiences studying in South Africa.

Freedom of choice

One benefit of attending university in South Africa is the unique structure of the degree system. The arrangement is unusual in that there are four exit points during the completion of three degrees. We start off with a three-year Bachelor of Science (B.Sc.) degree, followed by a year of honors studies. The masters and doctoral degrees begin after the honors year. If you are not pursuing a career in research, you have the option of completing your education after earning a B.Sc. This allows students to tailor our honors year material to the research area we wish to pursue during our M.Sc. and Ph.D., and so we are more prepared and focused when beginning those higher-level degrees.

Availability of resources and funding

South Africa has a growing scientific community, but the opportunities for collaboration and networking are still limited. This can impact the level of research and the growth of facilities taking place in the country. If you are trying to build a research group, it may take more effort and time than other places. However, the lack of certain resources encourages us to look elsewhere for necessary expertise. This helps us build relationships with researchers across the globe. There is also funding available to promote and host national and international conferences, and there are extensive online resources to help fill any gaps.

A prerequisite for registering for a M.Sc. or Ph.D. degree at any South African university is a source of funding for the duration of your studies. Most candidates are awarded a scholarship either by the Department of Science and Technology, the National Research Foundation or national facilities such as the CSIR. The South African government recently set a target of spending 1.5 percent of its budget on research and development by 2018. Funding is also provided by universities such as UKZN, which has its own scholarship program.

Networking opportunities

I have been fortunate enough to attend 22 academic conferences since completing my M.Sc. Conferences are excellent platforms to grow within your field and expand your network of colleagues and friends. There is one major national physics conference in South Africa, known as the South African Institute of Physics Conference. It is hosted annually by various institutes and is currently in its 59th year. My research group also hosts the Quantum Information Processing Communication and Control (QIPCC) Conference each year. This meeting is focused on quantum optics and information science, and is an initiative of the South African Research Chair for Quantum Information Processing and Communication.

Joining professional associations is also a great way to network, and there are several options in South Africa. The South African Institute of Physics is a prominent association for researchers. It has student memberships and provides discounts for student conferences. There are also three OSA Student Chapters: Durban, Pretoria and Stellenbosch. I am part of the newly formed Student Chapter at the UKZN, Durban. Since we joined OSA, we have had numerous avenues opened to us. I recently attended an IONS conference in Montreal, Canada, which was a wonderful experience for me and gave me lots of ideas for growing our Chapter at UKZN.

As a South African student, networking opportunities and the increasing availability of resources have played a major role in expanding my opportunities as a young researcher. I am happy to be contributing to the developing community of scientists in my country.

Yaseera Ismail completed her masters at the CSIR-National Laser Centre in Pretoria, South Africa, where her research focused on novel laser beam shaping for optical trapping and tweezing. She is currently completing her Ph.D. in quantum communication within the Quantum Research Group based at the University of KwaZulu-Natal, Durban, South Africa.

Academic Careers, Career Path, Conferences, Graduate School, International Careers, OSA Student Chapters, Ph.D. Perspectives , , , , , , ,

Building Your “Soft Skills”

5. June 2014

Lauren Celano

This post was adapted from content on the Propel Careers website and BioCareers.com. It is reproduced here with the author’s kind permission.

I often advise Ph.D. students on career planning and the various job options available to them. When I ask them to discuss their specific skills, many of them focus only on their research and technical skills. These are “hard skills,” such as genetics, computer science, chemistry or pharmacology. When I inquire about “soft skills,” I am often met with looks of confusion. Below are a few examples of “soft skills” that can help scientists become well-rounded job candidates in many different fields.

Teamwork
A Ph.D. student who works on a multi-disciplinary project team, for example, a cell biologist who works with a biochemist and a pharmacologist to understand a disease pathway, must have good teamwork skills to be successful. The same is true for someone who works on or leads a collaborative project with other labs in and outside of their institution, industry partners and foundations. These experiences provide examples that can be shared with potential employers to illustrate how one successfully worked on or led a team and learned through the process of working with others.

Non-Technical Writing
Many scientists are accustomed to writing manuscripts, grants, review articles, and of course, the ever-popular thesis. While this type of scientific communication is important, the ability to communicate with those outside your field of study is invaluable.

In fact, Albert Einstein is often credited with saying, “If you can’t explain something simply, you don’t understand it well enough.” To develop these skills, students can make an effort to write for different sources, such as the school newspaper, departmental newsletter, association publication or a personal blog.

Verbal Communication
Public speaking is a valuable asset for the career scientist. Students can build this skill through teaching and speaking at conferences, departmental meetings, association conferences, as well as foundation and charity events. One should also take on leadership roles in student organizations and associations (for example, OSA Student Chapters) as well as groups such as Toastmasters.

Networking
Formal and informal networking opportunities are everywhere; you just need to know where to look. Examples include participation in student government, technical interest groups and clubs and professional and industry organizations. Some professional organizations even have student affiliates.

More generally, you can find networking avenues are through common interest, advocacy and charitable groups, and social and professional networking events. In fact, I would bet that there is a networking opportunity to be had just about every night of the week. You just have to be willing to seek it out, and more importantly, gather the courage to attend and participate. You never know who you might meet—it’s truly up to you.

In today’s job market, hard skills are not always enough to get you into that perfect role. Employers are looking for “the whole package”: people who have the right mix of both soft and hard skills. Take the initiative to immerse yourself in opportunities to grow and develop in new directions. The effort will pay off.

Lauren Celano (lauren@propelcareers.com) is the co-founder and CEO of Propel Careers, a life science search and career development firm focused on connecting talented individuals with entrepreneurial life sciences companies.

 

Academic Careers, Career Path, Communication Skills, Conferences, Job Search, Ph.D. Perspectives , , , , , , ,

A Woman's Place Is in the Lab

1. April 2014

Arlene Smith

As a female engineer, one becomes accustomed to being a minority: in the lecture theatre, in the graduate lab and in the workplace. We have come a long way from the days when women scientists were an anomaly, but the number of women choosing STEM courses and careers still lags behind our male counterparts. Increasing female representation in STEM, from the classroom to leadership roles, requires increased support not just within the research and education communities, but also from hiring managers in industry.

 A recent study carried out by U.S. business school professors at Columbia University, Northwestern University and the University of Chicago found that a gender bias is still present at the hiring level for STEM roles. Hiring managers, both male and female, were asked to rate candidates based on their completion of simple mathematical tasks. When the managers were provided with no information other than appearance, men were twice as likely to be hired for a mathematical task then women. If a woman’s performance on the task was equal to that of a man, the man was still 1.5 times more likely to be hired for the role. The authors also concluded that, in an interview scenario, males tend to overestimate future performance, whereas women underestimate. Employers do not appreciate the extent of this bias, nor do they compensate for it at the point of hire.

In February 2014, the AIP Statistical Research Center released the results of a survey of U.S.-based Ph.D. graduates. The year 2012 saw an increase of 131 percent in the number of women completing Ph.Ds. in physics, compared with 2001. However, this accounts for just 20 percent of the total physics Ph.D. graduates in 2012. While this trend is encouraging, it’s clear that women are still underrepresented in the field and thus the graduate job market.

To increase female participation, there is an onus on women in the field to foster change, to take action and become involved. We need to communicate more, both with each other and with our male colleagues. This can mean outreach to middle and high schools, or staffing an industry booth at a career fair. You can show your support through mentoring programs and local and national societies and networks. Involvement is not limited to women— you don’t have to be female to recognize the advantages of a diverse workforce and support equality in the workplace. If women no longer fear that they will have to struggle against unfair prejudice in a STEM career, then more women will choose to study those subjects.

Luckily, we are not starting from scratch. Minorities and Women in OSA and SPIE Women in Optics provide seminars and networking opportunities for female scientists and engineers in optics. Connecting Women in Science, Technology and Entrepreneurship (WiSTEE Connect), established in 2013, provides an opportunity for connectivity and mentorship among women in science and engineering. I encourage you to educate yourself on these groups, as well as others on your campus or in your workplace, and support their efforts in building a more diverse and equal optics community.

What does it mean to be a female optical scientist today? For me, it means being part of an established, vibrant and growing community. What will it be like tomorrow? The trajectory will likely have its peaks and valleys, but we have every reason to be optimistic about the future—because it is ours to shape.

Arlene Smith (arlsmith@umich.edu) is a research fellow in the department of internal medicine at the University of Michigan, U.S.A.

 

Academic Careers, Career Path, Job Search, Women in Science , , , , ,

Finding Meaning in Your Ph.D. Research

25. February 2014
Arti Agrawal

I recently interviewed a Ph.D. candidate, and it brought back memories of my own graduate student days. In particular, it got me thinking about the times when I struggled to define exactly why getting my degree was important and what I was accomplishing.

Like most science students, I learned about the big, earthshattering developments in various fields while getting my Bachelor’s and Master’s degrees. It was exciting and inspiring to study key theories in physics and the critical advances that were made by people like Gauss, Newton, Feynman, Planck, Boltzmann and many others.

When I started my doctoral work, I was fresh-faced, eager and ready to make my own mark. I hoped to contribute something big to Science, with a capital S. I wanted to accomplish something like the achievements I had studied in class all those years, and add my name to the list of distinguished scientists taught in classrooms.

But as I proceeded with my research, things didn’t quite work out that way. Scientific accomplishment stopped seeming so simple. The work that you do when completing a Ph.D. is so narrow and focused that you begin to wonder where it fits into the big picture. What is the value of this small piece of work? How will it ever measure up against the really important developments written about in textbooks?

It takes time to realize that the advances we learned about were made over long periods of time and represent the work of many people. Science often advances in small increments, with lots of different discoveries added together to make a whole. Each scientist involved becomes a worthy contributor to the bigger picture. Some make larger contributions than others, and may become famous. That does not detract from the work of others, or the sheer joy that everyone can derive from research.

Once you come to terms with this and begin to understand where you fit in the larger scheme of things, it helps! At least it helped me find peace in my heart, pride in my work and the motivation to keep improving. Even though it may sometimes feel like it, your efforts are not useless. You are part of a larger scientific community, working together to make progress toward common goals.

Arti Agrawal (arti_agrawal@hotmail.com) is a lecturer at City University London in the department of electrical, electronic and information engineering at the School of Engineering and Mathematical Sciences. To follow her personal blog, visit http://artiagrawal.wordpress.com.

 

Academic Careers, Career Path, Graduate School, Ph.D. Perspectives , , , , , ,

How to benefit from internships, exchanges and scholarships

16. December 2013

Christian Reimer

Deciding where you want to conduct your graduate studies and on what kind of research are very difficult and important choices. Getting into the right program—ideally on a full scholarship—is even more challenging. Grades are certainly important, but there are other activities that can play a key role in starting your graduate studies on the right foot. Below are a few tips on how to make the most of these “extracurricular activities” to advance in your career.

Seek out new experiences

There are many ways for undergraduate students to get different kinds of experience and build a professional network, which will be helpful when applying to graduate school and other opportunities. Involvement with OSA Student Chapters, for example, offers valuable contact with other students and professionals with similar interests. Attending conferences and summer schools can broaden your scientific horizon and will help you to become more involved in your field. International exchanges are also valuable resources: a semester or year abroad will open your mind and provide new perspectives.

In my opinion, the most important activity is the acquisition of direct, firsthand research experience. Many research groups and companies offer internships for undergraduate students, which are a valuable addition to your CV and give you a glance into the academic or industrial world before you begin your graduate studies.

Apply, apply and apply

The lack of funds for research in academia is a fundamental and growing issue. It is therefore important to actively look and apply for as many scholarships and funding opportunities as possible. For example, there are many scholarships available to cover travel and other expenses for conferences, internships and exchanges. Even if these scholarships are small, there are very few reasons not to apply, and their impact can be significant for your CV. At first you may have to submit several applications to receive just one award, but after you have won a couple of scholarships and gathered some experience, you will find that success attracts more success.

Dare to ask

In my experience, there is a fundamental rule for a successful academic career: If you want something, ask for it. Being proactive and intelligently asking for what you want will help you throughout your professional life. For example, if you are interested in an internship, invest time and effort in writing a good and specific application letter, ask for help from someone who has already written successful applications, and apply even if no positions are advertised. The worst that can happen is that you do not get it.

The same applies if you want to collaborate with a research group, visit a conference or attend a summer school. If you do your homework and present legitimate reasons why you want to do it and how it will benefit your career or research, then do not be afraid to ask. You should be mentally prepared to have your request denied, but even then, the feedback and practice you receive will be valuable for the future.

While grades are certainly important, combining them with other types of experience will strengthen your CV and will help you get the right graduate position and succeed in academia. You can also take advantage of these opportunities without outstanding grades if you start small and apply often. The more you apply, the easier it will become.

Christian Reimer completed his German Diplom in Physics (equivalent to a M.Sc.) at the Karlsruhe Institute of Technology, Germany. During his studies, he participated in exchanges, research projects and internships at Draeger Inc., Germany; Heriot-Watt University, Scotland; the University of St Andrews, Scotland; Surrey University, England; the University of Glasgow, Scotland; and the University of Sydney, Australia. He is currently writing his Ph.D. at the Institut National de la Recherche Scientifique (INRS, http://www.uop.ca/), Canada, supported by a Vanier Canada Graduate Scholarship (www.vanier.gc.ca).

 

Academic Careers, Career Path, Communication Skills, Conferences, Graduate School, International Careers, Internships, Job Search , , , , , , , ,

Transitioning Between Undergraduate and Postgraduate Studies

2. October 2013

Yaseera Ismail

Life is full of transitions, and starting a career in science is no exception. One of the major shifts that I faced was moving from my undergraduate to postgraduate studies, and this period was not without its difficulties. Below, I’ll share some advice that will hopefully make the change smoother for others on the same path.


Be adaptable. I was first exposed to a research environment when I worked at the CSIR-National Laser Centre during my honors year. This was quite an eye-opening experience for me, as it was the first time I was at an institution whose primary objective was research output. As a result, I had to change my way of thinking. During my undergraduate studies, I was provided with a detailed, step- by-step syllabus. There is no such spoon-feeding as a postgrad student. This may seem daunting at first, but, as with any job, you adapt to the demands of your new situation.


Spending time in a laboratory also taught me that methodology is rarely set in stone. You try, you fail, and you come up with a new idea. Many postgrad students waste precious time fixating on a method that is not working. This is because, as undergraduates, we are conditioned to assume that our initial plan will not fail as long as it is approved by our supervisors. In graduate school, our supervisors are conducting the research alongside us, and therefore they do not already have the answers.


Manage your time. Cramming at the eleventh hour may work for undergraduates, but it won’t in graduate school. Postgraduate studies demand discipline. Procrastination is a crime that we are all guilty of, but it is critical to work diligently to finish your thesis on time. You should set short-term goals for each day so that you are never stagnant. It is difficult to keep your enthusiasm up at all times, and without a stringent supervisor to encourage you to meet deadlines, you may find yourself taking many a three-week break. Bear in mind that a Ph.D. thesis cannot be completed the week before the due date. Slow and steady wins the race!


Network. In the world of research, networking is a useful way to advance your career. Whenever attending a conference or public lecture, mingle with researchers and fellow students. Try to discover everyone's areas of interest and get their opinions on your work. A simple conversation over coffee can lead to helpful collaboration. I find it intimidating to speak to someone who is much more senior in my field, so I break the ice with a topic that is not related to my research and gradually direct the conversation towards the topic I want to discuss.


Be curious and open. Postgrad studies require initiative, determination and the desire to learn. You can choose what you want to learn and use that information to make something new. Don’t work in isolation. Instead, try to learn from everyone around you. There is a vast range of resources available, so make use of every opportunity on your way to success.


Yaseera Ismail completed her Masters at the CSIR-National Laser Centre in Pretoria, South Africa, where her research focused on novel laser beam shaping for optical trapping and tweezing. She is currently completing her Ph.D. in Quantum Communication within the Quantum Research Group based at the University of KwaZulu-Natal, Durban, South Africa.

Academic Careers, Career Path, Communication Skills, Graduate School , , , , , , , ,

What's Your Science Maturity Level?

5. September 2013

Marc Kuchner

 This post is adapted from content that first appeared on the blog Marketing for Scientists with the kind permission of the author.

I went to a scientific talk the other day that seemed to leave half the audience inspired and the other half frustrated. My frustrated colleagues insisted that the speaker did not present any true “results.” However, he did make some fascinating predictions about what would be discovered 10 or 20 years from now—forecasts that may be crucial for marketing exercises and expensive experiments.

Was this a good talk or a bad talk? Science or marketing?

Maybe it’s just a matter of taste. Some of us will never be satisfied by a talk unless we see a hypothesis confidently confirmed or discarded. Others may find the realm of topics subject to such clear decisions too limiting and yearn for a glimpse into the more distant future.

Still, we often argue over the quality of our colleagues’ presentations. When it is hiring time, for example, and faculty candidates are parading through your department, no doubt a common topic of conversation is who gave the best talk. And the maturity level of the research is often a contentious point.

With these conversations in mind, I’d like to suggest a numerical scale we can use to describe scientific talks. This scale is not meant to weigh the overall quality of a talk, but rather to resolve some of the tension between those who prefer solid conclusions and those who enjoy more nebulous forecasting. The first steps are about development of an idea by an individual scientist or research group; the last about the acceptance of the idea by the community.

Science Maturity Level (SML)

1. This talk presents a path that might one day lead to a testable new hypothesis or new data. An SML1 talk does not even strive to present scientific conclusions. Nonetheless, it can surprise and delight by illuminating a new research avenue that has become within arm’s reach, and it can shape the future of the field by its creativity and prescience.

2. The speaker presents a testable hypothesis with no constraining data or data whose interpretation is beyond the reach of state-of-the-art theoretical calculations. Such a talk can be boring, or it can be trendsetting, pointing the community to a fruitful direction for new work.

3. An SML 3 talk applies the full scientific method to the problem at hand, in whatever form the method is customarily used in the field. It compares a hypothesis to a data set and derives an unambiguous interpretation. However, so far the conclusion has garnered only limited attention from the scientific community, perhaps because it mainly confirms or reproduces previous work—or perhaps because it is new and thrilling.

4. This talk compares a hypothesis to a data set and appears to derive an unambiguous interpretation. Crucially, other researchers have confirmed or disputed this result in their talks and publications.

5. The speaker describes data and calculations that the community recognizes as part of its culture and history. Perhaps it describes the roots of a research paradigm that continues to spawn textbooks and doctoral theses. Perhaps it is about an old paradigm that has since been superseded. Attending such a talk can provide new insights, or it could be more about the pleasure of simply meeting a scientific celebrity.

It’s tempting to say that talks in the 1-2 range are more about marketing than science, but I’m not sure that’s the case. It seems to me that science is the process of moving from 1 to 5—and that this progress emerges from the community as a whole, not from any one scientist. So you can’t really describe a single talk as more “scientific” than another.

Also, I believe that talks at all points on the scale can be engaging and full of useful information, or dull and tiresome. The “marketing” is ultimately about whether the talk meets the needs of the audience—whether the needs are for information about the natural world or inspiration about future projects. So a talk on any research at any stage can be good or bad marketing.

Curiously, I’ve found that different scientific institutions seem to prefer different kinds of talks. Perhaps academic departments gravitate towards talks with higher SMLs, while government labs tend to prefer lower ones. Maybe that’s because government labs often focus on big projects that require lots of planning. That seems to be something to keep in mind when you are applying for jobs.

Ultimately, I think there is a place for all kinds of talks in our scientific universe. Perhaps the 4s and 5s belong at the beginning of a conference session, while the 1s, and 2s belong at the end. Talks about String Theory are often 1s, while review talks are 4s or 5s.

What do you think? Should your department focus on 1s and 2s, or 4s and 5s? Or should it aim to hire scientists who operate at both ends of the spectrum. What is the SML of your scientific talks?

Marc J. Kuchner (marc@marketingforscientists.com) is an astrophysicist at NASA, a country songwriter, and the author of the book Marketing for Scientists: How To Shine In Tough Times. His website can be found at http://www.marketingforscientists.com/.

Academic Careers, Career Path, Communication Skills, Conferences , , , ,

Viewpoint: Addressing Minorities in a Majority Culture

26. August 2013

Elsa Garmire

Did you ever travel to a different country? Did you try to speak their language? Or did you expect those around you to struggle with yours? Did you try to modify your behavior to fit in? Or did you stick to your role as tourist?

If you are male, have you ever gone to a place that was predominantly female—perhaps a ladies’ shop to purchase a gift for a loved one? Or taken your young children to a park filled with female nannies? Did you feel weird? Were you glad to get out of there?

Now imagine being a woman or minority in a field mostly populated by Caucasian men, such as optics. You can’t help but feel different. This feeling permeates your life, whether you realize it or not.

The National Academy of Sciences analyzed the status of women faculty in the sciences and published a report, titled “Beyond Bias and Barriers,” showing that most bias against minorities in the academic sciences is unconscious but nonetheless impedes their progress. I recommend it as a good place to understand what I’m talking about.

The ultimate barrier, in industry as well as academia, is referred to as the glass ceiling. Many studies have shown that minorities will be less likely to be promoted than their majority counterparts, even when they have equally excellent qualifications. This glass ceiling describes the idea that, while minorities can compete for top jobs, they are at a disadvantage in obtaining them. The very idea of the glass ceiling can cause behavior changes. One person might compensate by becoming excessively assertive or competitive (thereby called aggressive); another might give up the dream, thereby becoming underpaid (women are consistently paid less than men).

The field of optics includes many individuals who are physically different from the “rest of us,” presenting a challenge to the community. Yes, you can argue that optics should not depend on culture as defined by gender, race, disability, etc. But we each bring our own preconceptions to our work, and ignoring our differences doesn’t make them go away.

We all accept that optics already has a wide variety of cultures as defined by work roles. Scientists and engineers approach optics differently. Small businesses differ from large ones. Forms of decision-making help define the culture of an institution: Is it top-down or bottom-up? Regarding both work cultures and those shaped by gender and ethnicity, my motto is: Vive la difference! Our differences can bring a richness to the field of optics if we allow them.

How can we break down barriers while still respecting our differences? Here’s a place to start:

Accept cultural differences and acknowledge that they can cause unintended biases and barriers. If you don’t believe this, read up in the field and you’ll be convinced.

Make lists of minorities that you know (include yourself if appropriate) and present them to those in power, so they’ll remember them when openings occur, whether in careers, or in volunteer positions.

If you have a job opening, contact women and minorities in your network and ask them to apply. My role model for this is former OSA Executive Director Jarus Quinn, who consciously made opportunities for every qualified woman within OSA to participate. We need to make sure his pre-action (action before it's requested) continues within OSA.

Understanding the differences between minority and majority cultures will benefit everyone. I look forward to the day when all OSA members are pre-active in acknowledging bias and reducing barriers. What a rich and comfortable society we will become!

Elsa Garmire (garmire@dartmouth.edu) is the Sydney E. Junkins Professor, Dartmouth College, Hanover, N.H., U.S.A., and a former OSA president.

Academic Careers, Career Path, Communication Skills, Job Search, Women in Science , , , , , , , , ,

Networking through Student Conferences

20. August 2013

Shota Ushiba

We are often told about the importance of networking for furthering our careers. However, it’s not always easy for students to build these relationships, particularly as they are first starting out in their fields. In order to facilitate the creation of useful connections, the Osaka University OSA/SPIE Student Chapter, where I serve as the president, hosted an international student conference. The Asia Student Photonics Conference 2013 took place from 24-26 July at the Photonics Centre in Osaka University, Japan.
 
Organizing Logistics
The conference was financially supported by OSA, SPIE and other organizations. We aimed to build networks among Asian students and young researchers in the fields of optics and photonics, and to learn why networking is important, how we can create networks and what we can do with the networks. We were thrilled that more than 70 students from China, Taiwan, Malaysia, Singapore, India and Japan attended this year. It was the largest student conference we have ever hosted.
 
Making Connections
We conducted a variety of activities, with invited lecture sessions as a focal point. There were five guest speakers: Satoshi Kawata, Osaka University; Michael Alley, Pennsylvania State University; Prabhat Verma, Osaka University; Rinto Nakahara, President of Nanophoton Corp.and Junichiro Kono, Rice University. The speakers covered relevant career topics, including how to expand your network as a young scientist, how to communicate effectively through writing and presentations, and developing management skills. The speakers gave us clear, pragmatic answers to the issues we faced.
 
We also had student oral and poster presentations, group work, a social excursion and numerous coffee breaks and banquets. There was plenty of time for attendees to talk freely, which enabled us to get to know each other well. We made connections and bridged the cultural gaps between countries. I believe that these new relationships will pave the way for future research collaborations.
 
Becoming a Leader
My personal experience as the conference organizer was particularly enlightening and fulfilling. I arranged everything along with my colleagues, including funds, invited lecturers and student attendees. Students rarely get the opportunity to take on this kind of responsibility; it was great experience and practice for later on in my career. Throughout the three days of activities, we were thanked hundreds of times by the attendees; it was one of the most gratifying experiences that I have ever had. Our conference even inspired some of the student attendees to organize the next student conference, which will make our network wider and stronger. This sense of gratitude and shared responsibility is a great way to build up your community.
 
My work as the organizer of a student conference helped me to develop many abilities that I don’t often get the chance to hone. Although I sometimes struggled from taking on too many duties and had small conflicts with my colleagues over details, it was an overwhelmingly positive experience. I strongly recommend that you take the initiative to organize a similar event if you have the opportunity. It will broaden your perspective along with your network.
 
Shota Ushiba (ushiba@ap.eng.osaka-u.ac.jp) is a Ph.D. student in the Kawata Lab at Osaka University, Japan, and president of the Osaka Univ. OSA/SPIE Student Chapter. Check out his website or find him on Facebook.

Academic Careers, Career Path, Communication Skills, Conferences, Graduate School, OSA Student Chapters, Ph.D. Perspectives , , , , , , , ,