Career Culture Shock

11. September 2013

 Lisa Balbes

The other day, I was talking to a college student who recently started his summer job. He had a position that was very similar to what he had done the previous summer, but in a different place. This meant he was mostly doing the same type of work, but with a new group of people. Each organization had similar numbers of staff and customers, similar tasks that needed to be done, and similar metrics for success. Yet they were very different in one key respect: their culture.

While both sites completed their tasks on time (especially the customer-facing ones), one group actively sought out ways to help each other, leading to an enhanced sense of teamwork and camaraderie. They often socialized during off hours.

The second group was not as close-knit. They were friendly while at work, but happy to go home to their “real lives” and real friends. After having worked in the former environment, the student was surprised by this more distant attitude.

But the single difference that was most striking to him was in how each group handled it when they were asked to do something they’d never done before. At the first site, if a staff member did not know how to do something, he or she would learn from someone who did and then practice until they could do it well. By contrast, when those in the second location were asked to do something they’d never done before, most would find someone else who knew how to do it and then ask them to take care of it for them.

While the latter course is certainly the most efficient in the short-term, it might not be in the long run. What happens if that person is not available at a crucial time or leaves the company altogether? Both strategies have their place, and it is the job of the manager or supervisor to guide the staff into learning which is most appropriate for a particular company.

Most people are naturally inclined to work one way or the other. Some prefer to do the same thing over and over at work, and they derive great satisfaction from being the very best at that particular task. Others are not happy unless they have variety in their jobs and are constantly challenged to learn new things.

Most scientists are naturally curious people; they want to know how and why things work and are excited by the opportunity to do something new. My friend certainly fell into this camp – his exact words about his new co-workers were: “I could have forgiven them for not knowing if they had shown any interest in wanting to learn. Instead, they just got someone else to do it for them.” In his mind, asking the expert to do the task was slacking off, not being efficient.

But another person might well have said: “It’s all about being efficient. There’s no sense wasting time figuring out how to do something if someone already knows.”

When we talk about the culture of a company, we are really talking about a collection of small differences like this. They combine to create the atmosphere in which we work. When the way you like to work matches the way your organization operates, you feel comfortable and confident in what you are doing. When they don’t match, you may be unhappy without realizing why.

This article was written by Lisa M. Balbes, Ph.D. of Balbes Consultants LLC. Lisa is a freelance technical writer/editor and author of: “Nontraditional Careers for Chemists: New Formulas for Chemistry Careers,” published by Oxford University Press.

 

Career, Communication skills, Job Search , , , ,

What They Don’t Teach You in Graduate School

3. January 2013

Arti Agrawal   

I learned a lot in graduate school: science, research, patience, and technical writing skills, among many other things. So when I took my first position as a lecturer, I thought that my grad school training and subsequent experience as a post-doc had prepared me for professional life as an academic.

Boy, was I wrong!  Many skills that I need in my current job were not taught in school, and sometimes I am blindsided when professional life rudely makes demands on me that weren’t part of my carefully scripted student career. Below are some abilities that I have learned in the workplace.

Persuading and negotiating with people: I must often deal with people in positions of authority to obtain necessities like lab space or funds for equipment, conferences, training courses, or publishing in open access journals. There are limited resources, and the people holding the purse strings are besieged with demands from many others like us, so it’s important to know how to get what you need. Start by prioritizing your wish list into must-have, nice-to-have, and don’t-need-right-now items so that you can focus your energy and efforts accordingly.

Developing good work relationships: You will interact with colleagues, students, peers, superiors, suppliers, vendors and administrative staff, and it can be difficult to maintain these relationships successfully. As a typical geek, I had no idea how to manage working relationships, especially with people who were very different from me. Sometimes taking personality tests like the Meyers-Briggs can help you to better understand yourself and others. You can also get a head start on cultivating working relationships by taking on volunteer leadership opportunities such as organizing an IONS conference  or leading a student chapter—or simply networking within a professional society.

Managing my lab: When I began hiring people, I suddenly needed to understand legal requirements for equality and diversity, health and safety, and risk assessment. I also had to determine how to evaluate my staff. You can find much information online about hiring laws in your area, and my recent OPN article on “Learning to Teach” includes some ideas on how to think through student assessment.

Balancing more than one demanding job: As a post-doc, I would work on several research projects at once and even throw in a bit of teaching on the side—which felt overwhelming enough. But now added to the mix were administrative work, department meetings, lab management, securing funding, reviewing papers and supervising post-docs. Learning how to organize and prioritize is critical.

Saying no without offending: I find it hard to say no to people, and, as a result, I often take on more than I can handle. Although it can sometimes be difficult, it’s important to learn how to deal with such situations and say no without causing hurt or offense. Just be friendly but assertive about what you can and cannot realistically do. You must be able to set healthy boundaries in order to succeed in any relationship, whether personal or professional.

Indeed, these skills are not confined to any single profession–we need them in every sphere of life. Although they may not be part of any formal curriculum, you can learn them through experience and practice. Good luck!

Arti Agrawal (arti_agrawal@hotmail.com) is a lecturer at City University London in the department of electrical, electronic and information engineering at the School of Engineering and Mathematical Sciences. To follow her personal blog, visit http://artiagrawal.wordpress.com.

Academic careers, Career, Communication skills, Graduate school, Job Search , , , , , , ,

Understanding and Overcoming Scientist Stereotypes in the Workplace

8. March 2012

By Marcius Extavour

Culture shock can be at once the thrill and the bane of international travel. We must adapt to local culture, learn the language, and deal with stereotypes and others’ perceptions—or misperceptions—of who we are. These same lessons apply to professional “travel” and “relocation,” by which I mean working outside of one’s “home” profession—perhaps as an advisor to policymakers, for example, or in a managerial capacity at a company.

Scientists face a series of stubborn and pervasive personal stereotypes in outside work and study environments. This post outlines some of the most common caricatures and some suggestions for educating people about who scientists really are.

The solo operator

An individual working alone at a desk or lab bench, late into the night. Do you recognize this image of the scientist from media and pop culture? I don’t mean to suggest that science is not done in this way, as much of it is. However, this is clearly not the only work style. Single author papers are rare. Research collaborations abound, and they are encouraged by funders. Research groups rely on teamwork and many moving parts.

Yet those working outside of mainstream science often believe that we have no experience with teamwork and management hierarchies. We may therefore be either passed over for work or confined to individual tasks.

To push back, we must emphasize the collaborative side of science and our ability to thrive in managed teams. Though research hierarchies may not be as developed as they are in government or large corporations, most science groups rely on seniority (summer students, research associates, postdocs, staff scientists, PIs), a range of experience (undergraduates, technicians, senior faculty), and institutional hierarchies (grant writers, administrators) to manage talent and work flow.

Narrow expertise

There is no question that science requires deep focus and attention to detail. Subject matter expertise is the foundation on  broader knowledge and skill in science are built. Yet our deep and narrow focus as scientists can work against us in the eyes of generalists. When working in a new area, for instance, the scientist is often asked how their work is relevant to the new field. This is a fair question, since clearly not all scientific knowledge is universally applicable. From my own work, for example, the Kramers-Kronig relations generally have nothing to do with solar PV markets.

But if we take a step back from the cutting edge of our individual fields, we may find that connections between our specialized research and outside topics may emerge. To continue the example, light absorption in solids is certainly connected to solar electricity economics through PV device performance.

The connections may be indirect, but the overlap need only be large enough to build upon. It is important that scientists look for these connections, emphasize them to colleagues, and use them to maximize contributions to new areas.

Rigid, deaf to nuance, uncreative

Pop culture and media reinforce the broad misconception that scientists lack creativity, and that they are too rigid to adapt to surroundings and circumstances. This would be a terrible personal reputation in any field of work! Scientists must remember, and gently remind our non-scientist colleagues, that science demands fluidity and adaptability. Old ideas are pushed aside by new ones in the face of evidence and experiment. Scientific knowledge and truth evolve, and we must all evolve with it.

Often the leaders of change are the most creative among us. They make the unimaginable seem obvious once the evidence is presented and the experiments completed. Of course there is dogmatism and rigidity in science (as in any field), but these are far from the prevailing themes. This applies equally well to individual scientists.

How to combat these stereotypes in the workplace?

Battling stereotypes is not quick or easy. Often, we are not even given the chance to fight back directly, since few people even recognize or feel comfortable talking about their personal biases. Still, being aware of the misconceptions puts us in a better position to recognize the stereotypes that may undermine our goals and address them in honest conversation.

Marcius Extavour (marcius.extavour@sciencepolicy.ca) holds a Ph.D. in atomic physics and quantum optics from the University of Toronto. He served as the 2010-2011 OSA/SPIE Guenther Congressional Science Policy Fellow, and he is an active consultant and organizer in clean energy and science policy in Toronto, Canada.

Career, Communication skills, Nontraditional science careers , , , , ,