Lessons from a Faculty Search

9. January 2013

David McGloin

This post is reproduced from the blog Dundee Physics with the kind permission of the author.

When my department was hiring for a life sciences-related position this past fall, I was on a search and selection committee for the first time. It’s an interesting and tough process, so I thought I’d share some thoughts on how we went about assessing our applicants in the hope that other job seekers can benefit from my insight. We cast a wide net and ended up with a large number of very high quality candidates. It was a tough choice–so how did we decide?

Fit to specification: My first piece of advice is to make sure that your cover letter, CV and research statement clearly communicate how you fit the specific position advertised. While our call wasn’t restricted to those working in a certain topic area, applicants still needed to state how their work aligned itself to the life sciences. Writing that you were “really interested in biology” wasn’t going to cut it, and for some really strong physical sciences applicants, this is where they fell down. We wanted to see at least some evidence of how the applicant’s work had been applied to biophysics research or how it might be applied in our department (and not just generically).

Experience: Your experience to date matters a lot – it shows the trajectory that you are on, what kind of thinker you are and what you might be capable of. The areas you have worked on, your general productivity and the papers you have produced make a big difference. However, the reality is that this is only part of the package. You might have been unlucky in where you have worked, or the projects you were assigned may not have gone according to plan. We recognize this. When your papers and background are a little lacking, then your research statement becomes even more important.

Research Statement: So you want to come and work with us, but what exactly are you planning to do? Your research statement should outline a coherent program of work and describe an interesting project in an innovative way. Incremental changes are not as persuasive as plans on a larger scale. However, you also have to be realistic, and this is where the challenge lies: to outline something of grand ambition in such a way that we can believe you will be able to deliver. In my mind this is perhaps the most important section: It gives you the opportunity to showcase your talent regardless of what you have achieved.

Metrics:  Does your h-index matter? Your publication count? Number of citations? Where you publish? In modern academia, these things are very significant, probably much more than they should be. The wide variety of postdoc positions that people have means you can’t always compare such factors in any meaningful way. One of my colleagues thought that postdocs should produce at least one decent paper per year. We used this as a general standard, but not a hard-and-fast rule. We did consider numbers of citations, but only as one factor to help us get a sense of the value of the papers published. Ultimately, I think the panel paid more attention to where papers were published over other numbers, but we really tried to look at the whole picture rather than just one metric. We put more emphasis on the applicant’s research ideas and his or her potential to deliver than pure numbers.

Interview: You might make a good impression on paper, but you also have to talk the talk. We decided on a full day visit for each interviewee, so the candidates got to speak to a range of people across the university. We asked them to think specifically about which faculty members they might like to converse with, in order to push them to think about why exactly they wanted to work with us. They were also asked to give a talk. All this information gave the interview panel a rounder picture of each applicant.

Ultimately, we hired someone with great potential, who we believe will take on big challenges. We were looking for—and found—a person who is a good colleague, who fits in with the department and who interacts well with undergraduates. I hope you find a similar good fit in whatever position you seek!

David McGloin (d.mcgloin@dundee.ac.uk) is head of the division of physics and a senior lecturer at the University of Dundee, Scotland.

Academic careers, Career, Communication skills, Graduate school, Job Search, Postdocs , , , , , , , , ,

And So It Begins: Scientific Stereotypes

12. December 2012

David McGloin

This post is reproduced from the blog Dundee Physics with the kind permission of the author.

Recently, my daughter was asked to do a writing and comprehension exercise related to her science class. On the surface, it was a simple assignment: Look at an image and write descriptive words and phrases about it, and then put these into context in a few sentences. The exercise was linked to her current project work on magnets and their properties. (It was rather straightforward, as she is only in Primary 3.) But the picture that the teacher had chosen was what caught my eye. It was of a “scientist” in the old man, Einstein mold with a set of test tubes.

Although I don’t have a problem with the assignment itself, I do take issue with the way that this particular image reinforces the tired old cliché of the stereotypical scientist. This is the type of thing that seeps into kids’ minds and influences the way that they conceptualize the sciences. While it may not put them off entirely, it could lead them to perceive science as being uncool or only for a limited group of people. At a young age, I think many kids love science. They like doing experiments and discovering things. But after years of being bombarded with images like these, that can begin to change. I think my daughters are capable of anything, including becoming much better scientists than I am. However, in spite of their potential, years of reinforcement of the idea of scientists as disheveled old men could ultimately take its toll.

This is a deeply entrenched image in society, and it is not a simple problem to fix. The misconception should be addressed on multiple levels, and so science communication needs to extend much further than just the pupils. The solution begins with teachers. The instructors at a primary school may not know better. They too have grown up with these stereotypes, and they may be, through no fault of their own, unaware that this is an issue.  That is why we in the science community need to raise awareness among educators so that our teachers can help take on the lack of female students in the sciences. 

I have watched with interest the development of projects like Sciencegrrl and Geek Girl Scotland. For quite a while, I have sympathized with their cause and seen the need for such initiatives. However, before I had my own daughters, it didn’t hit quite so close to home. Now the issue seems much more personal. I have ordered a Sciencegrrl calendar to pass on to my local school. In addition, as the Head of Physics at Dundee University, I will try to look at ways to improve our attractiveness to female applicants. As a community, we need to explore ways in which we might help out more in the community to try and counter such stereotypes. As a start, I have ordered a Science Grrl calendar to donate to my kids’ school. You should get one too.

David McGloin (d.mcgloin@dundee.ac.uk) is head of the division of physics and a senior lecturer at the University of Dundee, Scotland. 

Academic careers, Career, Communication skills, Women in Science , , , , , , ,