Three Simple Steps to Networking Success

10. July 2014

Arlene Smith

I want to address a topic that is almost essential for career progression but can strike fear in an introvert’s heart: networking. Although it may feel like you’re the only one who gets nervous in networking situations, you’re not alone. Everyone fears rejection or embarrassment, but you don’t need to be afraid!

If speaking with your optics idol or asking a question makes you queasy, the following approach can quell your fears. I urge you to try it out.

1. Make your approach
The first step is deciding how to approach someone and begin a conversation with him or her. If you are in a panel session, approach a speaker and say, "I have a question and I would like to hear your thoughts." This shows the panelist that you value his or her opinion.

 If you are in an informal networking situation, try approaching a group and simply asking, "May I join you?" Remember, networking is about meeting new people. They want to meet you, too.

When deciding who to approach and how, ask yourself, "What’s the worst thing that could happen?" The very worst possibility is that the panelist or group isn't friendly, in which case you just move on. A better question to ask is, "What’s the BEST thing that could happen?" If you don’t put in the effort, you could miss out on great opportunities.

2. Have a conversation
After introducing yourself to someone and exchanging basic information, start asking him or her questions. I estimate that 90 percent of networking is showing interest in other people, so be sure to focus on the person to whom you’re speaking. Sometimes conversation flows naturally, but other times it might take more effort. Here are some good questions to get a dialog started: 

What are you currently working on?
• What result do you expect to see?
• What has challenged you?
• What has been your biggest success?
• Is there anyone here you hope to meet?

3. Follow up
When it is time to move on, exit the conversation by simply saying, "It was nice to speak with you. May I have your business cards/emails? I need to see a few more people today, but we should get in touch." Make sure to follow up:

• Write down a relevant detail from the conversation as soon as possible. This will help you remember the conversation and reconnect with that person later.
• Within two days, make contact and mention a specific point that you discussed. If you meet a lot of people, prioritize your list and contact the individuals you deem most likely to be helpful first. Contact the others at a later time.
• Make an effort to keep in contact with important people. Don't let them forget about you.

Arlene Smith (arlsmith@umich.edu) is a research fellow in the department of internal medicine at the University of Michigan, U.S.A.

 

Career, Communication skills, Conferences, Job Search , , , , , , ,

Building Your “Soft Skills”

5. June 2014

Lauren Celano

This post was adapted from content on the Propel Careers website and BioCareers.com. It is reproduced here with the author’s kind permission.

I often advise Ph.D. students on career planning and the various job options available to them. When I ask them to discuss their specific skills, many of them focus only on their research and technical skills. These are “hard skills,” such as genetics, computer science, chemistry or pharmacology. When I inquire about “soft skills,” I am often met with looks of confusion. Below are a few examples of “soft skills” that can help scientists become well-rounded job candidates in many different fields.

Teamwork
A Ph.D. student who works on a multi-disciplinary project team, for example, a cell biologist who works with a biochemist and a pharmacologist to understand a disease pathway, must have good teamwork skills to be successful. The same is true for someone who works on or leads a collaborative project with other labs in and outside of their institution, industry partners and foundations. These experiences provide examples that can be shared with potential employers to illustrate how one successfully worked on or led a team and learned through the process of working with others.

Non-Technical Writing
Many scientists are accustomed to writing manuscripts, grants, review articles, and of course, the ever-popular thesis. While this type of scientific communication is important, the ability to communicate with those outside your field of study is invaluable.

In fact, Albert Einstein is often credited with saying, “If you can’t explain something simply, you don’t understand it well enough.” To develop these skills, students can make an effort to write for different sources, such as the school newspaper, departmental newsletter, association publication or a personal blog.

Verbal Communication
Public speaking is a valuable asset for the career scientist. Students can build this skill through teaching and speaking at conferences, departmental meetings, association conferences, as well as foundation and charity events. One should also take on leadership roles in student organizations and associations (for example, OSA Student Chapters) as well as groups such as Toastmasters.

Networking
Formal and informal networking opportunities are everywhere; you just need to know where to look. Examples include participation in student government, technical interest groups and clubs and professional and industry organizations. Some professional organizations even have student affiliates.

More generally, you can find networking avenues are through common interest, advocacy and charitable groups, and social and professional networking events. In fact, I would bet that there is a networking opportunity to be had just about every night of the week. You just have to be willing to seek it out, and more importantly, gather the courage to attend and participate. You never know who you might meet—it’s truly up to you.

In today’s job market, hard skills are not always enough to get you into that perfect role. Employers are looking for “the whole package”: people who have the right mix of both soft and hard skills. Take the initiative to immerse yourself in opportunities to grow and develop in new directions. The effort will pay off.

Lauren Celano (lauren@propelcareers.com) is the co-founder and CEO of Propel Careers, a life science search and career development firm focused on connecting talented individuals with entrepreneurial life sciences companies.

 

Academic careers, Career, Communication skills, Conferences, Job Search, Ph.D. Perspectives , , , , , , ,

How to Tell Your Story

1. May 2014

Lisa Balbes

This post was adapted from content on the Career blog of the American Chemical Society (ACS) with the kind permission of ACS and the author.

Whether meeting someone at a conference or explaining to a potential employer how your background prepared you to meet their needs, scientists are often asked to tell their professional history. While it is hard to condense a lifetime of professional experience into a few minutes, it can be even harder to do it in a way that makes sense to the listener.

When you stop to reflect on your career history (which you should do on a regular basis), do you see that your career followed a straight trajectory, with each job leading logically to the next? I didn’t think so. Most people’s careers involve twists and turns, as they take advantage of unexpected opportunities and deal with unplanned disasters. The problem arises when you try to turn that succession of steps, each of which made sense at the time, into a single, coherent narrative that others can understand.

What stayed the same?
When tell your professional story, start with the elements that have remained consistent throughout the majority of your career. Have you always used the same techniques, worked in the same subject area or worked for the same type of company? Have all of your jobs involved seeing things in terms of how they relate to the big picture, or were they about making sure the details were correct? Finding a common theme that runs through your work history will make your story “hang together” when you tell it, and convey a sense of continuity and stability to your background.

What changed?
Next, identify what changed at the major transition points in your career. Did you take the same abilities but apply them in a new field? Did you learn new skills and techniques while working in the same field? Did you take the lessons you learned at a large company and scale them down to implement at a small start-up? Try to divide your history into a few major transitions, and other more minor transitions.

What did you learn?
Think about what you have learned in each of your career segments. How have your interests and abilities changed over time? What situations trigger your career changes? Can you use those insights to frame your career transitions? Being able to talk about why you made the changes you did and how you grew with each transition will emphasize your flexibility and broad background.

Where do you want to go?
Finally, think about your future goals. Whether you are happy in your current position or are looking for something new, you should have an idea of where you are headed. Whether it’s a new type of project in your current job or an entirely new career, you need to tell people where you want to go so they can help you get there.

Summarizing your career path in a succinct way that connects the dots for your listener is not a trivial exercise. In hindsight you may be able to see how you were preparing for your various career changes, even if you didn’t know it at the time. Once the whole story makes sense to you, you can tell it to others in a way that will make sense to them. While it won’t start with “once upon a time,” it will hopefully end with “happily ever after.”

This was written by Lisa M. Balbes, Ph.D., of Balbes Consultants LLC. Lisa is a freelance technical writer/editor and author of: “Nontraditional Careers for Chemists: New Formulas for Chemistry Careers,” published by Oxford University Press.

 

, , , , , , ,

Learning by Teaching

13. January 2014

Takayuki Umakoshi

The people in my family are not very familiar with science. I sometimes wish that I could discuss my work with them, but it is not easy to explain my research to people without a scientific background. This is just one of the many instances in which we as scientists need to communicate our work to people without extensive scientific knowledge. Communication skills are crucial to your success—for example, when applying for government funding for your research. Even if you get tremendous results, they won’t have an impact if you cannot explain them properly and make their significance understood.

Engaging children with science
My OSA/SPIE student chapter at Osaka University, Japan, recently held an outreach activity called “Super HIKARIJUKU.” During this annual event, we invite about 50 elementary school students to our campus and showed them how fascinating science can be through optics-related experiments. This year I served as a student chair, and the event was very successful. The kids had a great time and learned a lot about light. After helping to organize the event, I realized that discussing science with children taught me some important lessons about how to communicate scientific topics with non-scientific people.

Communicating successfully
In order to get our message across to the students, we had to do a lot of research. We asked parents and teachers what the children already knew, so we were aware of their level of scientific knowledge. We also found out about the latest popular cartoon characters, so that we could use fun images and concepts that children already recognize and enjoy to engage them even further. Practicing and testing our demonstrations was also very important—we showed the experiments to non-scientific people so that they could give us advice on the best way to make ourselves understood and to get kids excited about the subject matter. It took quite a bit of planning and effort, but we ended up with a really good set of experiments. Our thoughtful, hands-on demonstrations allowed us to explain complex concepts to children who might not have understood them otherwise.

Applying these skills
The communication skills that we learned by working with children are also applicable to adults outside of our very specific fields. I discovered that you need to be able to break down complicated ideas into simple, understandable pieces so that they can be useful to a wider audience. Think about what language will be most comprehensible and interesting to your listeners. Where possible, hands-on demonstrations are extremely helpful and can make seemingly abstract concepts much more engaging. If you are capable of making your research easier to understand, then it will be much easier to communicate its importance. Through my work with OSA, I realized that outreach activities like these are not only informational for our audiences, but also teach us how to communicate effectively. Teaching is learning.
 
Takayuki Umakoshi (umakoshi@ap.eng.osaka-u.ac.jp) is a Ph.D. student at Osaka University, Japan, and president of the Osaka University OSA/SPIE student chapter. For more information, please check out his website: https://sites.google.com/site/takayukiumakoshiwebsites/.

Career, Communication skills, OSA Student Chapters , , , , , ,

Combatting Engineering Stereotypes

8. January 2014

Brian Monacelli

Quick! Think of a well-known engineer, real or fictional, from pop culture.

I bet that took longer than expected, right?

Perhaps Scotty from Star Trek came to mind. He is admired among his fictional peers because the fate of the crew often depended on his technical prowess, but this chief engineer seldom made the promotional posters for the series.

Maybe you thought of Dilbert, the fictional comic nerd-hero who is disgruntled and unpopular in his own world. Though humorous, his frustrations with his job are not always relevant to engineering. However, he does share with real engineers the reputation of being unsocial.

Even in our modern society that relies so heavily on technology, engineers and scientists have a fairly negative social reputation. Though there are a handful of notable, socially visible scientists held in high regard in popular culture—Neil DeGrasse Tyson, Bill Nye and Carl Sagan, to name a few—I’m hard-pressed to think of any publically familiar engineers (not counting technically savvy entrepreneurs such as Elon Musk or Bill Gates).

The Wikipedia page for “engineer” is telling—there is an entire section specifically about public perception of the profession:

“…engineering has in the popular culture of some English-speaking countries been seen as a dry, uninteresting field and the domain of nerds. One challenge to public awareness of the profession is that average people lack personal dealings with engineers, even though they benefit from their work every day.”

Engineering is challenging, but not uninteresting. Most of us rely on our engineered devices, so much so that they are often the first things we reach for in the morning or watch before we sleep. If engineering is dull, why are over 2.5 million people in the United States alone (per the 2010 U.S. Census) employed as engineers?

Wikipedia identifies the problem well: people don’t often have the opportunity to meet the person who designed their phone display or aligned their camera lenses. Layers of corporate customer service often prevent consumers from providing direct feedback to an engineering team, and technical topics are mired in nuanced jargon.

However, I find that it is both refreshing and efficient to have a technical discussion in which specialized topics are broken down into basic concepts that can be understood by an interested, but less experienced person. It’s key to find the right balance of precise technical terminology and universal language for your particular audience.

I suggest that public opinion of engineers can be improved if those of us making the technology spent a few hours during the day in a classroom or discussing technical projects with non-technical peers. Optical engineers in particular should be able to relate to most people, since almost everyone interacts with light every day, whether it’s something as simple as their rearview mirror or as complex as their head-mounted display of a 3-D video that was downloaded via an optical fiber link. If you can convey complex technical topics simply and directly to anyone you meet, then you stand a better chance of being crystal clear when you interact with your professional colleagues.

This new year, consider how you can alter the negative stereotype by reaching out to a young person, a family member or a peer to educate them about your passion for engineering. Understanding technology is awesome, so make it a story that’s told over and over again. Become a better storyteller, and maybe someone in your audience will consider engineering as a career.

Brian Monacelli is an optical engineer. He also teaches photonics at Irvine Valley College, Calif., U.S.A.

 

Career, Communication skills, Engineering , , , , , ,

Want to be A Professional Scientist? Join the Facebook Group

9. October 2013

Marc Kuchner

This post is adapted from content that first appeared on the Nature blog with the kind permission of the author.

 Planetary scientist Heidi Hammel was at the telescope when Facebook alerted her to an important new target: a comet had just crashed into Jupiter. She said, “I learned about one of the impacts on Jupiter via Facebook, and we were able to do immediate follow-up.” It is no secret that, scientists are increasingly using social media not just for outreach or for fun, but to do real, ground breaking, earth-shattering science.
 
There are many websites devoted to science news and amateur science—but where do scientists go online to interact with their colleagues professionally? I asked my colleagues on the Marketing for Scientists Facebook group (mostly astronomers) to share their social networking advice. I think their answers point to a fascinating shift in the social fabric of the scientific community.
 
Use Facebook as a forum for scientific debate.
If you have a lot of Facebook friends, you can have professional scientific discussions right on your wall. Angela Speck told me, “Since a significant fraction of my friends are scientists they do respond to science questions. And then the ensuing wall discussion is like a chat over lunch.” Keep in mind that it takes time and effort to build that long list of followers or friends, and then more effort to keep up with them and sort through their status updates, so that tactic won’t necessarily be effective for everyone.
 
Join Professional Facebook or LinkedIn Groups.
Instead of building large contact lists themselves, more and more scientists are working with colleagues through Facebook groups. For example, Adam Burgasser told me, “Our ‘Low Mass Stars and Brown Dwarfs’ group has been a great place to post papers, promote astro apps, announce conferences, ask about pesky references etc.” Joining such a group is like instantly acquiring hundreds or thousands of high-powered new friends and followers.
 
LinkedIn groups are also a fertile home for scientific research. As Mark Eisner said, “In my field of hydrogeology, or more generally environmental consulting, I belong to 50. So much I cannot keep up.” These groups are a great forum for scientific discussion and career networking in particular.

Facebook and LinkedIn groups have become new incubators for scientific progress, providing important virtual places for scientists to work and to mingle. The trouble is that there’s no good directory of these groups of professional scientists on social networks. The most reliable way to find the professional Facebook groups for scientists seems to be to “friend” lots of colleagues whose interests overlap with yours, and look at their Facebook pages to see what groups they belong to. Then you have to ask permission to join. Otherwise, you need to start your own group and hope one doesn’t exist already for the topic you chose.

Perhaps one day, an organization like OSA or the American Association for the Advancement of Science will maintain a directory of Facebook and LinkedIn groups where active professional scientific collaborations are taking place. Such a tool would help young scientists meet established scientists, and help established scientists move into new fields where they don’t already have contacts.
 
In the meantime, the rise of this informal network of professional scientist groups makes it clearer than ever: in science, it matters who your friends are.

Marc J. Kuchner (marc@marketingforscientists.com) is an astrophysicist at NASA, a country songwriter, and the author of the book Marketing for Scientists: How To Shine In Tough Times. His website can be found at http://www.marketingforscientists.com/.

Career, Communication skills , , , , , , , ,

Networking through Student Conferences

20. August 2013

Shota Ushiba

We are often told about the importance of networking for furthering our careers. However, it’s not always easy for students to build these relationships, particularly as they are first starting out in their fields. In order to facilitate the creation of useful connections, the Osaka University OSA/SPIE Student Chapter, where I serve as the president, hosted an international student conference. The Asia Student Photonics Conference 2013 took place from 24-26 July at the Photonics Centre in Osaka University, Japan.
 
Organizing Logistics
The conference was financially supported by OSA, SPIE and other organizations. We aimed to build networks among Asian students and young researchers in the fields of optics and photonics, and to learn why networking is important, how we can create networks and what we can do with the networks. We were thrilled that more than 70 students from China, Taiwan, Malaysia, Singapore, India and Japan attended this year. It was the largest student conference we have ever hosted.
 
Making Connections
We conducted a variety of activities, with invited lecture sessions as a focal point. There were five guest speakers: Satoshi Kawata, Osaka University; Michael Alley, Pennsylvania State University; Prabhat Verma, Osaka University; Rinto Nakahara, President of Nanophoton Corp.and Junichiro Kono, Rice University. The speakers covered relevant career topics, including how to expand your network as a young scientist, how to communicate effectively through writing and presentations, and developing management skills. The speakers gave us clear, pragmatic answers to the issues we faced.
 
We also had student oral and poster presentations, group work, a social excursion and numerous coffee breaks and banquets. There was plenty of time for attendees to talk freely, which enabled us to get to know each other well. We made connections and bridged the cultural gaps between countries. I believe that these new relationships will pave the way for future research collaborations.
 
Becoming a Leader
My personal experience as the conference organizer was particularly enlightening and fulfilling. I arranged everything along with my colleagues, including funds, invited lecturers and student attendees. Students rarely get the opportunity to take on this kind of responsibility; it was great experience and practice for later on in my career. Throughout the three days of activities, we were thanked hundreds of times by the attendees; it was one of the most gratifying experiences that I have ever had. Our conference even inspired some of the student attendees to organize the next student conference, which will make our network wider and stronger. This sense of gratitude and shared responsibility is a great way to build up your community.
 
My work as the organizer of a student conference helped me to develop many abilities that I don’t often get the chance to hone. Although I sometimes struggled from taking on too many duties and had small conflicts with my colleagues over details, it was an overwhelmingly positive experience. I strongly recommend that you take the initiative to organize a similar event if you have the opportunity. It will broaden your perspective along with your network.
 
Shota Ushiba (ushiba@ap.eng.osaka-u.ac.jp) is a Ph.D. student in the Kawata Lab at Osaka University, Japan, and president of the Osaka Univ. OSA/SPIE Student Chapter. Check out his website or find him on Facebook.

Academic careers, Career, Communication skills, Conferences, Graduate school, OSA Student Chapters, Ph.D. Perspectives , , , , , , , ,

Writing Up a (Scientific) Storm

30. July 2013

Arti Agrawal

As a Ph.D. student, I was exposed to only two kinds of science writing: textbooks and journal articles. When our work reached a sufficiently advanced stage, we wrote our own papers and submitted them to journals. I still remember the excitement of submitting my first paper—and the disappointment of my first rejection. My energy and attention, like those of other graduate students I knew, were focused on research. Writing about our work was a bit of a chore.

However, since that time my perception of writing in science has changed dramatically. Today, I see it as a creative process almost on par with research. Writing should be an enjoyable process of content creation that allows you to present your research in an effective manner and express your individual style.

Not only can writing be personally fulfilling, it’s also professionally important. Doing good science is fantastic, but if that work does not reach other people, then much of our purpose remains unachieved. Having well-written papers can help get you published—which can be critical to progressing in your career. Increasingly, employers are also looking for examples of less technical writing skills. Writing does not have to be a hardship—you just have to start thinking about the task in a new way.

Consider writing a blog. The potential outlets for your work are more varied than ever before. For example, a blog (such as OSA’s blog, this career blog, or my own blog) is a great way to communicate more informally about topics in science. This format gives you a lot of freedom in choosing the subject matter, technical level and content type of your posts. You can express opinions on other people’s work, policy and current issues in science.

Take advantage of new opportunities in traditional publications. Science magazines such as OPN allow for more creative writing than peer-review journals do. They include letters to the editor, reviews, opinions and interviews. Even with journals, the ability to upload supplementary data, videos and other multimedia means we can be quite innovative in how we engage others with our work. Papers no longer need to be collections of static graphs and text.

Utilize social media. By using social networks such as Facebook and Twitter, we can target information to specific people or to large groups. On Twitter, we can draw attention to a piece of work by using just 140 characters. Online availability of content means we can open a window and speak to the whole world—an exciting development! What you write today can be read all over the world in a way that wasn’t possible just a decade ago.

These days, I miss writing if I don’t do it every so often—something I never would have imagined. In fact, I like it so much that I co-wrote an entire book! The more you write, the easier it gets, so take advantage of every opportunity and seek out new ways to practice your skills.

Arti Agrawal (arti_agrawal@hotmail.com) is a lecturer at City University London in the department of electrical, electronic and information engineering at the School of Engineering and Mathematical Sciences. To follow her personal blog, visit http://artiagrawal.wordpress.com.

Academic careers, Career, Communication skills, Graduate school, Job Search, Publishing , , , , , , , , ,

To Find the Right Job, Learn How to Ask the Right Questions

22. July 2013

Lisa Balbes

This post was adapted from content on the Career blog of the American Chemical Society (ACS) with the kind permission of ACS and the author.

While I was in graduate school and for a few years afterwards, I excelled at finding good apartments as I moved from place to place. Eventually, I returned to my hometown and became ready to buy a house. When my father asked me what I was looking for, I started to list all the qualities I had sought in an apartment. He pointed out that many of those things didn’t matter when one is looking for a house, and vice versa. While both apartments and houses are places to live, there are significant differences between them.

I was recently reminded of this incident when a graduate student came to me for help in finding a job after graduation. I asked her what she was looking for in a new position, and she proceeded to talk about the techniques that she had used in school—instruments with which she was familiar and classes that she had taken. While those are all important parts of your education, they are not what you want to focus on when looking for a new job.

When determining your requirements for your next job, think more broadly. Identify not just what you did, but what you accomplished and why it was important. Most candidates make the mistake of being too specific in their description of their previous job. They use their resume to list what they’ve done, often in excruciating detail. The odds of another company hiring you to do exactly what you did previously is fairly small –and you probably want to try something at least a little bit different anyway.

Ask yourself not “Exactly what have I done?” but “How can I generalize my skills to cover more territory?” This makes your skills applicable to a much broader range of employers. Since so many resumes are electronically searched for certain keywords, it’s even more important to make sure your resume includes the general terms employers are using, not the narrower ones that describe precisely what you did before.

At the same time, be specific when it comes to “softer” skills such as communications, teamwork and leadership. While most of the resumes I see are too specific when it comes to technical abilities, they are often overly general with these softer proficiencies. Virtually every resume claims that the applicant has “excellent communication skills” (probably because someone told them that was important), but few include tangible examples.

In this case, ask yourself not “What skills do I have?” but “What particular accomplishment do I have that demonstrates my proficiency?” For example, did you write more than 25 standards for manufacturing procedures, resulting in an 18 percent decrease in production errors? Or did you testify before Congress about the importance of your research, resulting in a 150 percent increase in funding for your field over the next three years? Both demonstrate communication skills, but in very different ways. Are you better at oral or written communication? Are you more comfortable debating technical issues with other scientists, or explaining theories to non-scientists?

Once you learn how to categorize, generalize and apply your specific technical accomplishments to other areas—and to identify concrete examples of softer skills—you will be in a good position to prove that you can do whatever you say you can. In other words, you’ll have the right answers when others start asking the questions.

This article was written by Lisa M. Balbes, Ph.D. of Balbes Consultants LLC. Lisa is a freelance technical writer/editor and author of: “Nontraditional Careers for Chemists: New Formulas for Chemistry Careers,” published by Oxford University Press.

Career, Communication skills, Job Search , , , , , , ,

How to Find the Right Postdoc Position

16. July 2013
Ming Li
 
Many recent Ph.D. students would like to land a faculty position at a university or research institute soon after graduating. However, there are only a few of these opportunities available every year. For each opening, there will likely be many qualified applicants from all over the world, with very strong CVs and publication records. In this climate, it is extremely challenging to break into academia immediately following grad school, and so a postdoctoral position has become an important springboard to a tenure-track academic job.
 
For the past four years, I was a postdoctoral research fellow in two Canadian photonics research groups: the Microwave Photonics Research Laboratory at the University of Ottawa, under the supervision of Jianping Yao, and the Ultrafast Optical Processing group at the Institute National de la Recherche Scientifique (INRS), under the supervision of José Azaña. My time as a postdoc has been a great experience that others could benefit from as well, and so here I provide my personal perspective and advice about how to find and take advantage of a postdoctoral position.
 
Find the right match for your research interests. A postdoctoral research contract is usually for about two years. Due to this short timeline, professors are looking to hire researchers who can be immediately involved in the research activities of the group and make meaningful contributions, particularly in the form of journal publications or conference presentations. The capability of the postdoc to bring new ideas into ongoing projects is critical to hiring professors when they are assessing candidates.
 
Use your network. A nice recommendation letter from someone who is familiar with the professor with whom you’d like to work can play a key role in successfully applying for a postdoctoral position. Professors often approach friends and colleagues to recommend a candidate who has the necessary background and capabilities. Try to take advantage of your existing connections, and work to broaden your network in addition to strengthening your CV.
 
Hone your communication skills. In Canadian labs, a postdoc serves as the liaison between students and the professor. In addition to working on his or her own research, a postdoc also assists the professor in guiding students, scheduling experiments, arranging group meetings, etc. Therefore, interpersonal skills are crucial, in and out of the lab. I learned these abilities from my two supervisors and practiced them throughout my time in Canada. Now, I use these important skills when working with my own students in China.
 
Seek out useful collaborations. On a related topic, it is important to take advantage of opportunities to form helpful relationships between different research labs. A postdoc must be able to negotiate and communicate with the people in other groups in order to complete projects in the most effective way. These collaborative experiences not only helped me to finish some of my most interesting research, but also to build a large professional network—which can be even more important in the long-term.
 
Although it can be difficult to get the tenure-track position that you’re hoping for immediately after finishing your Ph.D., don’t be discouraged. There are many valuable skills that you can learn as a postdoctoral researcher, and this experience will put you on the right track to accomplish the rest of your career goals.
 
Dr. Ming Li (ml@semi.ac.cn) is a full professor at the Institute of Semiconductors at the Chinese Academy of Sciences. 

Academic careers, Career, Communication skills, Graduate school, Job Search, Ph.D. Perspectives, Postdocs , , , , , , ,