What's Your Science Maturity Level?

5. September 2013

Marc Kuchner

 This post is adapted from content that first appeared on the blog Marketing for Scientists with the kind permission of the author.

I went to a scientific talk the other day that seemed to leave half the audience inspired and the other half frustrated. My frustrated colleagues insisted that the speaker did not present any true “results.” However, he did make some fascinating predictions about what would be discovered 10 or 20 years from now—forecasts that may be crucial for marketing exercises and expensive experiments.

Was this a good talk or a bad talk? Science or marketing?

Maybe it’s just a matter of taste. Some of us will never be satisfied by a talk unless we see a hypothesis confidently confirmed or discarded. Others may find the realm of topics subject to such clear decisions too limiting and yearn for a glimpse into the more distant future.

Still, we often argue over the quality of our colleagues’ presentations. When it is hiring time, for example, and faculty candidates are parading through your department, no doubt a common topic of conversation is who gave the best talk. And the maturity level of the research is often a contentious point.

With these conversations in mind, I’d like to suggest a numerical scale we can use to describe scientific talks. This scale is not meant to weigh the overall quality of a talk, but rather to resolve some of the tension between those who prefer solid conclusions and those who enjoy more nebulous forecasting. The first steps are about development of an idea by an individual scientist or research group; the last about the acceptance of the idea by the community.

Science Maturity Level (SML)

1. This talk presents a path that might one day lead to a testable new hypothesis or new data. An SML1 talk does not even strive to present scientific conclusions. Nonetheless, it can surprise and delight by illuminating a new research avenue that has become within arm’s reach, and it can shape the future of the field by its creativity and prescience.

2. The speaker presents a testable hypothesis with no constraining data or data whose interpretation is beyond the reach of state-of-the-art theoretical calculations. Such a talk can be boring, or it can be trendsetting, pointing the community to a fruitful direction for new work.

3. An SML 3 talk applies the full scientific method to the problem at hand, in whatever form the method is customarily used in the field. It compares a hypothesis to a data set and derives an unambiguous interpretation. However, so far the conclusion has garnered only limited attention from the scientific community, perhaps because it mainly confirms or reproduces previous work—or perhaps because it is new and thrilling.

4. This talk compares a hypothesis to a data set and appears to derive an unambiguous interpretation. Crucially, other researchers have confirmed or disputed this result in their talks and publications.

5. The speaker describes data and calculations that the community recognizes as part of its culture and history. Perhaps it describes the roots of a research paradigm that continues to spawn textbooks and doctoral theses. Perhaps it is about an old paradigm that has since been superseded. Attending such a talk can provide new insights, or it could be more about the pleasure of simply meeting a scientific celebrity.

It’s tempting to say that talks in the 1-2 range are more about marketing than science, but I’m not sure that’s the case. It seems to me that science is the process of moving from 1 to 5—and that this progress emerges from the community as a whole, not from any one scientist. So you can’t really describe a single talk as more “scientific” than another.

Also, I believe that talks at all points on the scale can be engaging and full of useful information, or dull and tiresome. The “marketing” is ultimately about whether the talk meets the needs of the audience—whether the needs are for information about the natural world or inspiration about future projects. So a talk on any research at any stage can be good or bad marketing.

Curiously, I’ve found that different scientific institutions seem to prefer different kinds of talks. Perhaps academic departments gravitate towards talks with higher SMLs, while government labs tend to prefer lower ones. Maybe that’s because government labs often focus on big projects that require lots of planning. That seems to be something to keep in mind when you are applying for jobs.

Ultimately, I think there is a place for all kinds of talks in our scientific universe. Perhaps the 4s and 5s belong at the beginning of a conference session, while the 1s, and 2s belong at the end. Talks about String Theory are often 1s, while review talks are 4s or 5s.

What do you think? Should your department focus on 1s and 2s, or 4s and 5s? Or should it aim to hire scientists who operate at both ends of the spectrum. What is the SML of your scientific talks?

Marc J. Kuchner (marc@marketingforscientists.com) is an astrophysicist at NASA, a country songwriter, and the author of the book Marketing for Scientists: How To Shine In Tough Times. His website can be found at http://www.marketingforscientists.com/.

Academic Careers, Career Path, Communication Skills, Conferences , , , ,

Viewpoint: Addressing Minorities in a Majority Culture

26. August 2013

Elsa Garmire

Did you ever travel to a different country? Did you try to speak their language? Or did you expect those around you to struggle with yours? Did you try to modify your behavior to fit in? Or did you stick to your role as tourist?

If you are male, have you ever gone to a place that was predominantly female—perhaps a ladies’ shop to purchase a gift for a loved one? Or taken your young children to a park filled with female nannies? Did you feel weird? Were you glad to get out of there?

Now imagine being a woman or minority in a field mostly populated by Caucasian men, such as optics. You can’t help but feel different. This feeling permeates your life, whether you realize it or not.

The National Academy of Sciences analyzed the status of women faculty in the sciences and published a report, titled “Beyond Bias and Barriers,” showing that most bias against minorities in the academic sciences is unconscious but nonetheless impedes their progress. I recommend it as a good place to understand what I’m talking about.

The ultimate barrier, in industry as well as academia, is referred to as the glass ceiling. Many studies have shown that minorities will be less likely to be promoted than their majority counterparts, even when they have equally excellent qualifications. This glass ceiling describes the idea that, while minorities can compete for top jobs, they are at a disadvantage in obtaining them. The very idea of the glass ceiling can cause behavior changes. One person might compensate by becoming excessively assertive or competitive (thereby called aggressive); another might give up the dream, thereby becoming underpaid (women are consistently paid less than men).

The field of optics includes many individuals who are physically different from the “rest of us,” presenting a challenge to the community. Yes, you can argue that optics should not depend on culture as defined by gender, race, disability, etc. But we each bring our own preconceptions to our work, and ignoring our differences doesn’t make them go away.

We all accept that optics already has a wide variety of cultures as defined by work roles. Scientists and engineers approach optics differently. Small businesses differ from large ones. Forms of decision-making help define the culture of an institution: Is it top-down or bottom-up? Regarding both work cultures and those shaped by gender and ethnicity, my motto is: Vive la difference! Our differences can bring a richness to the field of optics if we allow them.

How can we break down barriers while still respecting our differences? Here’s a place to start:

Accept cultural differences and acknowledge that they can cause unintended biases and barriers. If you don’t believe this, read up in the field and you’ll be convinced.

Make lists of minorities that you know (include yourself if appropriate) and present them to those in power, so they’ll remember them when openings occur, whether in careers, or in volunteer positions.

If you have a job opening, contact women and minorities in your network and ask them to apply. My role model for this is former OSA Executive Director Jarus Quinn, who consciously made opportunities for every qualified woman within OSA to participate. We need to make sure his pre-action (action before it's requested) continues within OSA.

Understanding the differences between minority and majority cultures will benefit everyone. I look forward to the day when all OSA members are pre-active in acknowledging bias and reducing barriers. What a rich and comfortable society we will become!

Elsa Garmire (garmire@dartmouth.edu) is the Sydney E. Junkins Professor, Dartmouth College, Hanover, N.H., U.S.A., and a former OSA president.

Academic Careers, Career Path, Communication Skills, Job Search, Women in Science , , , , , , , , ,

Networking through Student Conferences

20. August 2013

Shota Ushiba

We are often told about the importance of networking for furthering our careers. However, it’s not always easy for students to build these relationships, particularly as they are first starting out in their fields. In order to facilitate the creation of useful connections, the Osaka University OSA/SPIE Student Chapter, where I serve as the president, hosted an international student conference. The Asia Student Photonics Conference 2013 took place from 24-26 July at the Photonics Centre in Osaka University, Japan.
 
Organizing Logistics
The conference was financially supported by OSA, SPIE and other organizations. We aimed to build networks among Asian students and young researchers in the fields of optics and photonics, and to learn why networking is important, how we can create networks and what we can do with the networks. We were thrilled that more than 70 students from China, Taiwan, Malaysia, Singapore, India and Japan attended this year. It was the largest student conference we have ever hosted.
 
Making Connections
We conducted a variety of activities, with invited lecture sessions as a focal point. There were five guest speakers: Satoshi Kawata, Osaka University; Michael Alley, Pennsylvania State University; Prabhat Verma, Osaka University; Rinto Nakahara, President of Nanophoton Corp.and Junichiro Kono, Rice University. The speakers covered relevant career topics, including how to expand your network as a young scientist, how to communicate effectively through writing and presentations, and developing management skills. The speakers gave us clear, pragmatic answers to the issues we faced.
 
We also had student oral and poster presentations, group work, a social excursion and numerous coffee breaks and banquets. There was plenty of time for attendees to talk freely, which enabled us to get to know each other well. We made connections and bridged the cultural gaps between countries. I believe that these new relationships will pave the way for future research collaborations.
 
Becoming a Leader
My personal experience as the conference organizer was particularly enlightening and fulfilling. I arranged everything along with my colleagues, including funds, invited lecturers and student attendees. Students rarely get the opportunity to take on this kind of responsibility; it was great experience and practice for later on in my career. Throughout the three days of activities, we were thanked hundreds of times by the attendees; it was one of the most gratifying experiences that I have ever had. Our conference even inspired some of the student attendees to organize the next student conference, which will make our network wider and stronger. This sense of gratitude and shared responsibility is a great way to build up your community.
 
My work as the organizer of a student conference helped me to develop many abilities that I don’t often get the chance to hone. Although I sometimes struggled from taking on too many duties and had small conflicts with my colleagues over details, it was an overwhelmingly positive experience. I strongly recommend that you take the initiative to organize a similar event if you have the opportunity. It will broaden your perspective along with your network.
 
Shota Ushiba (ushiba@ap.eng.osaka-u.ac.jp) is a Ph.D. student in the Kawata Lab at Osaka University, Japan, and president of the Osaka Univ. OSA/SPIE Student Chapter. Check out his website or find him on Facebook.

Academic Careers, Career Path, Communication Skills, Conferences, Graduate School, OSA Student Chapters, Ph.D. Perspectives , , , , , , , ,

Are All Citations Created Equal?

14. August 2013

Pablo Artal

OSA Fellow Pablo Artal has kindly allowed OPN’s Bright Futures career blog to adapt and republish content from his popular blog Optics Confidential. In his blog, Artal fields questions from students, colleagues and other researchers on science, society and managing a career in optics.
 
Dear Pablo, I am confused about what works to cite in my scientific papers. Should I cite only the papers that helped me with my research? Or should I expand the list to include those that I found clearly wrong or even misleading? –Bruno, Italy.
 
I believe the proper approach is to cite everything that you actually used during your research. This includes seminal papers that may have inspired your project, articles on the methods you used, papers presenting similar previous work, and even research that you may consider incorrect or biased—although you should mention why you think it is invalid. This is an important part of the scientific process, and it will help your colleagues in the future.
 
Your question brings up an issue that I have long found troubling. As you know, the number of citations a scientist receives on his or her papers can be a deciding factor in receiving grants, academic jobs and prestige. The so-called h-index, referring to the number of papers that a scientist has with the same or higher number of citations, is a particularly important metric. For instance, if I have an h-index of 41, that means that 41 of my articles have received 41 or more citations. Some time ago, I covered this issue in more detail in my other blog in Spanish.
 
Although the number of citations is a better measure of scientific performance than simply counting the number of published papers, it is far from perfect. There are many possible problems with this system. For example, the differences in the number of publications and citations among different scientific fields generally make it difficult to compare between subject areas.
 
You can get an automatic count of citations on an article in Google Scholar or Web of Science, but this doesn’t take into account the fact that citations are not all equal—maybe you know a scientist whose work has a large number of citations, but some of them are actually negative. To avoid problems like this, I propose that we classify citations into four categories. I’ve listed them below with some examples obtained from actual papers.
 
Seminal citations:
“We followed the approach proposed and first implemented by (ref) to perform the current experiment…”
 
Positive citations:
“The results of figure 5 are in good agreement with those presented in (ref)”
“Figure 3 compares our results with those of previous works (ref)”
 
Neutral citations:
“Although we followed the same procedure, we were not able to reproduce their results. This may be due to some individual variability. However, several other authors’ findings were similar to ours.”

Negative citations:
“The suggestion by (ref) is clearly incorrect…”
“An additional problem in this study is the surprising lack of details provided on some of the most relevant methods and procedures used.”
 
I understand the technical difficulty of classifying different types of citations, but this system would provide a more accurate depiction of scientific value. Appropriate software could classify every citation within these categories, and each would be rated with points. For instance, seminal citations would be worth two points, positive ones would be worth one, neutral citations would have no points and negative citations would be negative one point.
 
A few decades ago, many of us were unhappy with the mere counting of papers as a measure of success, and the current system has helped address that. But other issues have cropped up. We could not begin to imagine at that time the large emphasis that would be placed on citation counts today. Perhaps the time has come to reevaluate.
 
Pablo Artal (Pablo@um.es) is an OSA Fellow and professor of optics at the University of Murcia, Spain. He is an optical and vision scientist with an interest in visual optics, optical instrumentation, adaptive optics, and biomedical optics and photonics.

Academic Careers, Career Path, Publishing , , , , , , , , , ,

Planning Your Career During Your Ph.D.

8. August 2013

Yanina Shevchenko

 
This spring I attended a talk given by Greg Morrisett, Harvard University, who spoke to graduate students about how they could best use their time while pursuing their Ph.D. I recently finished my own Ph.D. and have just started to transition into my postdoctoral work, and I found that his ideas lined up very well with my own observations. Although getting your degree might seem like a never-ending endeavor at times, it will be over before you know it and you need to be prepared. Below are a few tips to get you started.

Strategize. Try to plan six or seven years ahead in your career. If you don’t have an ideal track in mind, just come up with an option that seems most attractive to you right now. You can always adjust your career plans as you move forward. A bad strategy is better than no strategy at all.
 
Learn and practice. Use this time to figure out how you learn most effectively, and put that technique to good use. Enroll in courses outside your discipline—now is the time to sign up for that Chinese language class that you’ve always wanted to try. In addition to academic learning, take every opportunity to prepare yourself for teaching and management roles. Practice giving talks and hone your public speaking skills in any way that you can. These are all abilities that will serve you very well later in your career.
 
Explore both academia and industry. Apply for internships in different areas and attend conferences and workshops. Ask your advisor and colleagues for advice on the way that funding works and how to obtain it. Get comfortable applying for grants and other available funding resources. In general, develop a habit of asking for more--it never hurts to ask, as long as you do it the right way.
 
Analyze. It’s a good idea to keep a journal of your career plans and research ideas so that you can chart your progress. Be constructive with your appraisal of yourself, but don’t be too critical--there is some truth to the saying that cynics don’t make breakthroughs. Use this time to take some risks and experiment.
 
Collaborate. Work with other graduate students and different research groups as often as you can. Exploring various research styles will help you to identify your own preferred methods, and learning to work with a diverse range of people will teach you to be flexible and adaptable.
 
Socialize. Make friends and spend time with your colleagues and others outside the lab. Invest in these relationships, because these people will be your support network when you transition to your next position. The same applies to mentors and faculty. Get to know them and what they do before you leave the institution. Online interaction can be also quite helpful for making connections. Volunteer to blog and get your name out there.
 
The prospect of deciding your career post-Ph.D. can be daunting, but with careful planning you can make the transition much smoother.
 
Yanina Shevchenko (yshevchenko@gmwgroup.harvard.edu) is the NSERC Postdoctoral Fellow in the Whitesides Research Group, department of chemistry and chemical biology, Harvard University, U.S.A.

Academic Careers, Career Path, Graduate School, Job Search, Ph.D. Perspectives, Postdocs , , , , , , , ,

Writing Up a (Scientific) Storm

30. July 2013

Arti Agrawal

As a Ph.D. student, I was exposed to only two kinds of science writing: textbooks and journal articles. When our work reached a sufficiently advanced stage, we wrote our own papers and submitted them to journals. I still remember the excitement of submitting my first paper—and the disappointment of my first rejection. My energy and attention, like those of other graduate students I knew, were focused on research. Writing about our work was a bit of a chore.

However, since that time my perception of writing in science has changed dramatically. Today, I see it as a creative process almost on par with research. Writing should be an enjoyable process of content creation that allows you to present your research in an effective manner and express your individual style.

Not only can writing be personally fulfilling, it’s also professionally important. Doing good science is fantastic, but if that work does not reach other people, then much of our purpose remains unachieved. Having well-written papers can help get you published—which can be critical to progressing in your career. Increasingly, employers are also looking for examples of less technical writing skills. Writing does not have to be a hardship—you just have to start thinking about the task in a new way.

Consider writing a blog. The potential outlets for your work are more varied than ever before. For example, a blog (such as OSA’s blog, this career blog, or my own blog) is a great way to communicate more informally about topics in science. This format gives you a lot of freedom in choosing the subject matter, technical level and content type of your posts. You can express opinions on other people’s work, policy and current issues in science.

Take advantage of new opportunities in traditional publications. Science magazines such as OPN allow for more creative writing than peer-review journals do. They include letters to the editor, reviews, opinions and interviews. Even with journals, the ability to upload supplementary data, videos and other multimedia means we can be quite innovative in how we engage others with our work. Papers no longer need to be collections of static graphs and text.

Utilize social media. By using social networks such as Facebook and Twitter, we can target information to specific people or to large groups. On Twitter, we can draw attention to a piece of work by using just 140 characters. Online availability of content means we can open a window and speak to the whole world—an exciting development! What you write today can be read all over the world in a way that wasn’t possible just a decade ago.

These days, I miss writing if I don’t do it every so often—something I never would have imagined. In fact, I like it so much that I co-wrote an entire book! The more you write, the easier it gets, so take advantage of every opportunity and seek out new ways to practice your skills.

Arti Agrawal (arti_agrawal@hotmail.com) is a lecturer at City University London in the department of electrical, electronic and information engineering at the School of Engineering and Mathematical Sciences. To follow her personal blog, visit http://artiagrawal.wordpress.com.

Academic Careers, Career Path, Communication Skills, Graduate School, Job Search, Publishing , , , , , , , , ,

To Find the Right Job, Learn How to Ask the Right Questions

22. July 2013

Lisa Balbes

This post was adapted from content on the Career blog of the American Chemical Society (ACS) with the kind permission of ACS and the author.

While I was in graduate school and for a few years afterwards, I excelled at finding good apartments as I moved from place to place. Eventually, I returned to my hometown and became ready to buy a house. When my father asked me what I was looking for, I started to list all the qualities I had sought in an apartment. He pointed out that many of those things didn’t matter when one is looking for a house, and vice versa. While both apartments and houses are places to live, there are significant differences between them.

I was recently reminded of this incident when a graduate student came to me for help in finding a job after graduation. I asked her what she was looking for in a new position, and she proceeded to talk about the techniques that she had used in school—instruments with which she was familiar and classes that she had taken. While those are all important parts of your education, they are not what you want to focus on when looking for a new job.

When determining your requirements for your next job, think more broadly. Identify not just what you did, but what you accomplished and why it was important. Most candidates make the mistake of being too specific in their description of their previous job. They use their resume to list what they’ve done, often in excruciating detail. The odds of another company hiring you to do exactly what you did previously is fairly small –and you probably want to try something at least a little bit different anyway.

Ask yourself not “Exactly what have I done?” but “How can I generalize my skills to cover more territory?” This makes your skills applicable to a much broader range of employers. Since so many resumes are electronically searched for certain keywords, it’s even more important to make sure your resume includes the general terms employers are using, not the narrower ones that describe precisely what you did before.

At the same time, be specific when it comes to “softer” skills such as communications, teamwork and leadership. While most of the resumes I see are too specific when it comes to technical abilities, they are often overly general with these softer proficiencies. Virtually every resume claims that the applicant has “excellent communication skills” (probably because someone told them that was important), but few include tangible examples.

In this case, ask yourself not “What skills do I have?” but “What particular accomplishment do I have that demonstrates my proficiency?” For example, did you write more than 25 standards for manufacturing procedures, resulting in an 18 percent decrease in production errors? Or did you testify before Congress about the importance of your research, resulting in a 150 percent increase in funding for your field over the next three years? Both demonstrate communication skills, but in very different ways. Are you better at oral or written communication? Are you more comfortable debating technical issues with other scientists, or explaining theories to non-scientists?

Once you learn how to categorize, generalize and apply your specific technical accomplishments to other areas—and to identify concrete examples of softer skills—you will be in a good position to prove that you can do whatever you say you can. In other words, you’ll have the right answers when others start asking the questions.

This article was written by Lisa M. Balbes, Ph.D. of Balbes Consultants LLC. Lisa is a freelance technical writer/editor and author of: “Nontraditional Careers for Chemists: New Formulas for Chemistry Careers,” published by Oxford University Press.

Career Path, Communication Skills, Job Search , , , , , , ,

How to Find the Right Postdoc Position

16. July 2013
Ming Li
 
Many recent Ph.D. students would like to land a faculty position at a university or research institute soon after graduating. However, there are only a few of these opportunities available every year. For each opening, there will likely be many qualified applicants from all over the world, with very strong CVs and publication records. In this climate, it is extremely challenging to break into academia immediately following grad school, and so a postdoctoral position has become an important springboard to a tenure-track academic job.
 
For the past four years, I was a postdoctoral research fellow in two Canadian photonics research groups: the Microwave Photonics Research Laboratory at the University of Ottawa, under the supervision of Jianping Yao, and the Ultrafast Optical Processing group at the Institute National de la Recherche Scientifique (INRS), under the supervision of José Azaña. My time as a postdoc has been a great experience that others could benefit from as well, and so here I provide my personal perspective and advice about how to find and take advantage of a postdoctoral position.
 
Find the right match for your research interests. A postdoctoral research contract is usually for about two years. Due to this short timeline, professors are looking to hire researchers who can be immediately involved in the research activities of the group and make meaningful contributions, particularly in the form of journal publications or conference presentations. The capability of the postdoc to bring new ideas into ongoing projects is critical to hiring professors when they are assessing candidates.
 
Use your network. A nice recommendation letter from someone who is familiar with the professor with whom you’d like to work can play a key role in successfully applying for a postdoctoral position. Professors often approach friends and colleagues to recommend a candidate who has the necessary background and capabilities. Try to take advantage of your existing connections, and work to broaden your network in addition to strengthening your CV.
 
Hone your communication skills. In Canadian labs, a postdoc serves as the liaison between students and the professor. In addition to working on his or her own research, a postdoc also assists the professor in guiding students, scheduling experiments, arranging group meetings, etc. Therefore, interpersonal skills are crucial, in and out of the lab. I learned these abilities from my two supervisors and practiced them throughout my time in Canada. Now, I use these important skills when working with my own students in China.
 
Seek out useful collaborations. On a related topic, it is important to take advantage of opportunities to form helpful relationships between different research labs. A postdoc must be able to negotiate and communicate with the people in other groups in order to complete projects in the most effective way. These collaborative experiences not only helped me to finish some of my most interesting research, but also to build a large professional network—which can be even more important in the long-term.
 
Although it can be difficult to get the tenure-track position that you’re hoping for immediately after finishing your Ph.D., don’t be discouraged. There are many valuable skills that you can learn as a postdoctoral researcher, and this experience will put you on the right track to accomplish the rest of your career goals.
 
Dr. Ming Li (ml@semi.ac.cn) is a full professor at the Institute of Semiconductors at the Chinese Academy of Sciences. 

Academic Careers, Career Path, Communication Skills, Graduate School, Job Search, Ph.D. Perspectives, Postdocs , , , , , , ,

The Career Uncertainty Principle

2. July 2013
Rocío Borrego-Varillas 
 
In physics, the uncertainty principle states that we cannot precisely measure the position and momentum of a subatomic particle at the same time. Many students approaching the completion of their Ph.D. experience a unique career-related variation of this principle: The closer they get to graduation, the more difficult it is to make plans for the future.
 
Although it’s exciting to complete your degree, facing a new professional stage can be stressful.  You can minimize this anxiety by planning early and developing the skills you’ll need to reach your long-term goals. Certain abilities are valuable regardless of whether you want to pursue a career in academia or in industry. These “transferable skills” include networking, communication and fund management. 
 
There are many ways to develop your transferable skills. In fact, some doctoral programs even include specialized courses on these proficiencies. Here are some of my suggestions:
 
Develop your oral communication skills. You can find many resources on the Internet. I especially like “English communication for scientists,” a free tool from Nature Education with tutorials on topics ranging from giving conference presentations to preparing lectures. Many conferences also provide very helpful seminars on scientific communication (for example, Jean-luc Doumont’s video and OPN article on “Creating Effective Slides”).
 
Become a better writer. Although we have many day-to-day writing obligations for school or work, it is a good idea to build your non-technical writing skills as well. There are a wide variety of outlets where you can practice: write for a blog, local newspaper, magazine or outreach book (like “El laser, la luz de nuestro tiempo”). For example, you can write for Optics & Photonics News (OPN), the membership magazine of The Optical Society; OPFocus, an independent magazine reviewing important recent developments in the fields of optics and photonics; and of course OPN’s Bright Futures career blog! 
 
Create a network. Student-oriented conferences such as the IONS meetings offer a great chance to build a professional network and meet colleagues. Conferences and technical meetings in general will help you to learn about different subject areas and introduce you to potential employers. Many offer professional development events, such as presentations by journal editors or meetings with entrepreneurs, which provide insight into different professions and the qualifications they require.
 
Learn fund raising and grant management. A good way to practice is to help your supervisor with his or her proposal by writing the paragraphs corresponding to your project description. Another good opportunity to get experience in this realm is through an OSA student chapter, as you will often file activity grants applications and raise funds to support chapter events. 
 
My advice for those of you running up against your “uncertainty principle” is to make it work in your favor—by keeping as many doors open as possible and learning as you go. With so many exciting possibilities to explore, perhaps certainty is overrated.
 
Rocío Borrego-Varillas (rborrego@uji.es) received her Ph.D. from the University of Salamanca, Spain. She is currently a postdoctoral researcher at the Universitat Jaume I, Spain, and has been recently awarded a Marie Curie Fellowship to conduct her research at the Politecnico di Milano, Italy.

Academic Careers, Career Path, Communication Skills, Conferences, Graduate School, Job Search, OSA Student Chapters, Postdocs , , , , , , , ,

How to Find the Right Advisor

24. June 2013

Shoresh Shafei and Sean Mossman

When you enter grad school, you are immediately faced with a barrage of choices: which courses to take, where to find funding, which topic to study, etc. It’s easy to see how finding an advisor can fall to the bottom the list. Yet it is one of the most important steps you can take toward launching a successful scientific career, since a good advisor can help you to tackle all those other decisions effectively. Everyone has different needs and priorities, but here are a few factors we think are crucial to consider.

Look for a leader. Labs run more smoothly with a strong leader, so you should take the management techniques of the advisor into account. A research group may include several postdocs, graduate students and undergrads, in addition to long- and short-term visitors. These people most likely have different motivations and goals, and they may come from diverse cultural backgrounds. A group leader must be able to balance these varied interests, help the members to work together constructively, and minimize conflicts.

Understand that training is key. He or she should spend time teaching you the skills you need to become a successful scientist. A graduate student isn’t just extra help around the lab; he or she is a mentee! The ultimate goal should be for students to become original thinkers, not to learn how to run an experiment on autopilot without interpreting data or coming up with ideas of their own.

Learn communication skills. A good mentor should communicate effectively and urge you to do the same. He or she should encourage you to prepare and present talks at conferences, make informative and eye-catching posters, and build a helpful network of colleagues. You need to be thinking about all aspects of your education, and your advisor should too.

Consider your mentor’s accessibility. Many graduate students complain about having to wait for a long time to meet with their advisor or receive a response to their emails. Regular one-on-one interaction with your mentor is crucial to making the most of your relationship. It can be difficult to know in advance how available your advisor will be, but you can ask current or former group members about their experiences.

Think about research standards and reputation. Your future advisor’s research standards will become yours as well. Think about how his or her research projects are conducted, results are analyzed, and findings are reported. Is the emphasis on getting research published as quickly as possible, or does quality take precedence? What matters most to you? Finding an advisor with a good reputation will help you to build your own, especially as a young scientist preparing yourself for the job market.

Although there are many factors that contribute to your success in graduate school, having an effective and supportive advisor is extremely helpful. Do yourself a favor and give this decision the time and consideration it deserves by thinking about it early. The more information you have, the better choices you’ll make.

We would like to dedicate this article to Prof. Mark Kuzyk, a great friend and outstanding advisor, for his 55th birthday.

Shoresh Shafei (shafei@wsu.edu) and Sean Mossman are with the department of physics and astronomy at Washington State University in Pullman, Wash., U.S.A. 

 

, , , , , , , ,