A Woman's Place Is in the Lab

1. April 2014

Arlene Smith

As a female engineer, one becomes accustomed to being a minority: in the lecture theatre, in the graduate lab and in the workplace. We have come a long way from the days when women scientists were an anomaly, but the number of women choosing STEM courses and careers still lags behind our male counterparts. Increasing female representation in STEM, from the classroom to leadership roles, requires increased support not just within the research and education communities, but also from hiring managers in industry.

 A recent study carried out by U.S. business school professors at Columbia University, Northwestern University and the University of Chicago found that a gender bias is still present at the hiring level for STEM roles. Hiring managers, both male and female, were asked to rate candidates based on their completion of simple mathematical tasks. When the managers were provided with no information other than appearance, men were twice as likely to be hired for a mathematical task then women. If a woman’s performance on the task was equal to that of a man, the man was still 1.5 times more likely to be hired for the role. The authors also concluded that, in an interview scenario, males tend to overestimate future performance, whereas women underestimate. Employers do not appreciate the extent of this bias, nor do they compensate for it at the point of hire.

In February 2014, the AIP Statistical Research Center released the results of a survey of U.S.-based Ph.D. graduates. The year 2012 saw an increase of 131 percent in the number of women completing Ph.Ds. in physics, compared with 2001. However, this accounts for just 20 percent of the total physics Ph.D. graduates in 2012. While this trend is encouraging, it’s clear that women are still underrepresented in the field and thus the graduate job market.

To increase female participation, there is an onus on women in the field to foster change, to take action and become involved. We need to communicate more, both with each other and with our male colleagues. This can mean outreach to middle and high schools, or staffing an industry booth at a career fair. You can show your support through mentoring programs and local and national societies and networks. Involvement is not limited to women— you don’t have to be female to recognize the advantages of a diverse workforce and support equality in the workplace. If women no longer fear that they will have to struggle against unfair prejudice in a STEM career, then more women will choose to study those subjects.

Luckily, we are not starting from scratch. Minorities and Women in OSA and SPIE Women in Optics provide seminars and networking opportunities for female scientists and engineers in optics. Connecting Women in Science, Technology and Entrepreneurship (WiSTEE Connect), established in 2013, provides an opportunity for connectivity and mentorship among women in science and engineering. I encourage you to educate yourself on these groups, as well as others on your campus or in your workplace, and support their efforts in building a more diverse and equal optics community.

What does it mean to be a female optical scientist today? For me, it means being part of an established, vibrant and growing community. What will it be like tomorrow? The trajectory will likely have its peaks and valleys, but we have every reason to be optimistic about the future—because it is ours to shape.

Arlene Smith (arlsmith@umich.edu) is a research fellow in the department of internal medicine at the University of Michigan, U.S.A.

 

Academic careers, Career, Job Search, Women in Science , , , , ,

Finding Meaning in Your Ph.D. Research

25. February 2014
Arti Agrawal

I recently interviewed a Ph.D. candidate, and it brought back memories of my own graduate student days. In particular, it got me thinking about the times when I struggled to define exactly why getting my degree was important and what I was accomplishing.

Like most science students, I learned about the big, earthshattering developments in various fields while getting my Bachelor’s and Master’s degrees. It was exciting and inspiring to study key theories in physics and the critical advances that were made by people like Gauss, Newton, Feynman, Planck, Boltzmann and many others.

When I started my doctoral work, I was fresh-faced, eager and ready to make my own mark. I hoped to contribute something big to Science, with a capital S. I wanted to accomplish something like the achievements I had studied in class all those years, and add my name to the list of distinguished scientists taught in classrooms.

But as I proceeded with my research, things didn’t quite work out that way. Scientific accomplishment stopped seeming so simple. The work that you do when completing a Ph.D. is so narrow and focused that you begin to wonder where it fits into the big picture. What is the value of this small piece of work? How will it ever measure up against the really important developments written about in textbooks?

It takes time to realize that the advances we learned about were made over long periods of time and represent the work of many people. Science often advances in small increments, with lots of different discoveries added together to make a whole. Each scientist involved becomes a worthy contributor to the bigger picture. Some make larger contributions than others, and may become famous. That does not detract from the work of others, or the sheer joy that everyone can derive from research.

Once you come to terms with this and begin to understand where you fit in the larger scheme of things, it helps! At least it helped me find peace in my heart, pride in my work and the motivation to keep improving. Even though it may sometimes feel like it, your efforts are not useless. You are part of a larger scientific community, working together to make progress toward common goals.

Arti Agrawal (arti_agrawal@hotmail.com) is a lecturer at City University London in the department of electrical, electronic and information engineering at the School of Engineering and Mathematical Sciences. To follow her personal blog, visit http://artiagrawal.wordpress.com.

 

Academic careers, Career, Graduate school, Ph.D. Perspectives , , , , , ,

Do You Have the Right Attitude?

27. January 2014

Lisa Balbes

This post was adapted from content on the Career blog of the American Chemical Society (ACS) with the kind permission of ACS and the author.

Have you ever had a great day, where everything was going right and one success just seemed to lead into the next one? Conversely, have you ever had a bad day, where you started off in a poor mood, and all you could see was the bad in everything? Did those good or bad days sometimes extend into weeks?

We’ve all experienced stretches of time where things seem to keep going in the same direction. But did you ever stop to consider that it might be your attitude that is the driving factor?

Sometimes, having a somewhat negative attitude towards a particular task can be a productive thing. For example, if you are a technical editor, you start a project by thinking, “What is wrong with this document, and how can I change it to better meet the needs of the intended audience?” You go in looking for things that are wrong, knowing that they are there, and don’t stop looking until you find and fix them.

While working from the hypothesis that “there’s something wrong and I must find it” is helpful in some cases, approaching every situation that way can work against you. If you are in the habit of always looking for problems and mismatches, you will be at a decided disadvantage when you are searching or interviewing for a new job.

Instead of focusing on how well you fit the company and how your professional accomplishments are ideally suited to the requirements of the job, you may continue looking for problems and ways that you don’t fit.

There is no job that is absolutely perfect for you—there will always be something you don’t like or don’t know how to do. What you’re looking for is a position where the good outweighs the bad, and you enjoy doing the good parts so much that the other parts are only minor annoyances. When looking for a new job, it is important to focus on the positive, looking at the skills and experiences that make you qualified for that position instead of dwelling on areas where you don’t fit.

This becomes even more important when you get to the interview stage. The interviewer expects you to convince him or her not only that you can do the job, but that you really want it. You should describe in detail how perfectly suited you are for the position, and how your prior accomplishments have prepared you to do exactly what they need. In order to sell yourself to the interviewers, you first have to sell yourself to yourself.

After all, if you can’t convince yourself that you’re perfect for the job, how do you expect to convince a potential employer? So the next time someone tells you to keep a positive attitude about your job search, remember that they are right. Be positive that there is a job out there for which you’re the perfect candidate—and keep looking until you find it.

This article was written by Lisa M. Balbes, Ph.D., of Balbes Consultants LLC. Lisa is a freelance technical writer/editor and author of: “Nontraditional Careers for Chemists: New Formulas for Chemistry Careers,” published by Oxford University Press.

Career, Communication skills, Job Search , , , ,

Learning by Teaching

13. January 2014

Takayuki Umakoshi

The people in my family are not very familiar with science. I sometimes wish that I could discuss my work with them, but it is not easy to explain my research to people without a scientific background. This is just one of the many instances in which we as scientists need to communicate our work to people without extensive scientific knowledge. Communication skills are crucial to your success—for example, when applying for government funding for your research. Even if you get tremendous results, they won’t have an impact if you cannot explain them properly and make their significance understood.

Engaging children with science
My OSA/SPIE student chapter at Osaka University, Japan, recently held an outreach activity called “Super HIKARIJUKU.” During this annual event, we invite about 50 elementary school students to our campus and showed them how fascinating science can be through optics-related experiments. This year I served as a student chair, and the event was very successful. The kids had a great time and learned a lot about light. After helping to organize the event, I realized that discussing science with children taught me some important lessons about how to communicate scientific topics with non-scientific people.

Communicating successfully
In order to get our message across to the students, we had to do a lot of research. We asked parents and teachers what the children already knew, so we were aware of their level of scientific knowledge. We also found out about the latest popular cartoon characters, so that we could use fun images and concepts that children already recognize and enjoy to engage them even further. Practicing and testing our demonstrations was also very important—we showed the experiments to non-scientific people so that they could give us advice on the best way to make ourselves understood and to get kids excited about the subject matter. It took quite a bit of planning and effort, but we ended up with a really good set of experiments. Our thoughtful, hands-on demonstrations allowed us to explain complex concepts to children who might not have understood them otherwise.

Applying these skills
The communication skills that we learned by working with children are also applicable to adults outside of our very specific fields. I discovered that you need to be able to break down complicated ideas into simple, understandable pieces so that they can be useful to a wider audience. Think about what language will be most comprehensible and interesting to your listeners. Where possible, hands-on demonstrations are extremely helpful and can make seemingly abstract concepts much more engaging. If you are capable of making your research easier to understand, then it will be much easier to communicate its importance. Through my work with OSA, I realized that outreach activities like these are not only informational for our audiences, but also teach us how to communicate effectively. Teaching is learning.
 
Takayuki Umakoshi (umakoshi@ap.eng.osaka-u.ac.jp) is a Ph.D. student at Osaka University, Japan, and president of the Osaka University OSA/SPIE student chapter. For more information, please check out his website: https://sites.google.com/site/takayukiumakoshiwebsites/.

Career, Communication skills, OSA Student Chapters , , , , , ,

Combatting Engineering Stereotypes

8. January 2014

Brian Monacelli

Quick! Think of a well-known engineer, real or fictional, from pop culture.

I bet that took longer than expected, right?

Perhaps Scotty from Star Trek came to mind. He is admired among his fictional peers because the fate of the crew often depended on his technical prowess, but this chief engineer seldom made the promotional posters for the series.

Maybe you thought of Dilbert, the fictional comic nerd-hero who is disgruntled and unpopular in his own world. Though humorous, his frustrations with his job are not always relevant to engineering. However, he does share with real engineers the reputation of being unsocial.

Even in our modern society that relies so heavily on technology, engineers and scientists have a fairly negative social reputation. Though there are a handful of notable, socially visible scientists held in high regard in popular culture—Neil DeGrasse Tyson, Bill Nye and Carl Sagan, to name a few—I’m hard-pressed to think of any publically familiar engineers (not counting technically savvy entrepreneurs such as Elon Musk or Bill Gates).

The Wikipedia page for “engineer” is telling—there is an entire section specifically about public perception of the profession:

“…engineering has in the popular culture of some English-speaking countries been seen as a dry, uninteresting field and the domain of nerds. One challenge to public awareness of the profession is that average people lack personal dealings with engineers, even though they benefit from their work every day.”

Engineering is challenging, but not uninteresting. Most of us rely on our engineered devices, so much so that they are often the first things we reach for in the morning or watch before we sleep. If engineering is dull, why are over 2.5 million people in the United States alone (per the 2010 U.S. Census) employed as engineers?

Wikipedia identifies the problem well: people don’t often have the opportunity to meet the person who designed their phone display or aligned their camera lenses. Layers of corporate customer service often prevent consumers from providing direct feedback to an engineering team, and technical topics are mired in nuanced jargon.

However, I find that it is both refreshing and efficient to have a technical discussion in which specialized topics are broken down into basic concepts that can be understood by an interested, but less experienced person. It’s key to find the right balance of precise technical terminology and universal language for your particular audience.

I suggest that public opinion of engineers can be improved if those of us making the technology spent a few hours during the day in a classroom or discussing technical projects with non-technical peers. Optical engineers in particular should be able to relate to most people, since almost everyone interacts with light every day, whether it’s something as simple as their rearview mirror or as complex as their head-mounted display of a 3-D video that was downloaded via an optical fiber link. If you can convey complex technical topics simply and directly to anyone you meet, then you stand a better chance of being crystal clear when you interact with your professional colleagues.

This new year, consider how you can alter the negative stereotype by reaching out to a young person, a family member or a peer to educate them about your passion for engineering. Understanding technology is awesome, so make it a story that’s told over and over again. Become a better storyteller, and maybe someone in your audience will consider engineering as a career.

Brian Monacelli is an optical engineer. He also teaches photonics at Irvine Valley College, Calif., U.S.A.

 

Career, Communication skills, Engineering , , , , , ,

How to benefit from internships, exchanges and scholarships

16. December 2013

Christian Reimer

Deciding where you want to conduct your graduate studies and on what kind of research are very difficult and important choices. Getting into the right program—ideally on a full scholarship—is even more challenging. Grades are certainly important, but there are other activities that can play a key role in starting your graduate studies on the right foot. Below are a few tips on how to make the most of these “extracurricular activities” to advance in your career.

Seek out new experiences

There are many ways for undergraduate students to get different kinds of experience and build a professional network, which will be helpful when applying to graduate school and other opportunities. Involvement with OSA Student Chapters, for example, offers valuable contact with other students and professionals with similar interests. Attending conferences and summer schools can broaden your scientific horizon and will help you to become more involved in your field. International exchanges are also valuable resources: a semester or year abroad will open your mind and provide new perspectives.

In my opinion, the most important activity is the acquisition of direct, firsthand research experience. Many research groups and companies offer internships for undergraduate students, which are a valuable addition to your CV and give you a glance into the academic or industrial world before you begin your graduate studies.

Apply, apply and apply

The lack of funds for research in academia is a fundamental and growing issue. It is therefore important to actively look and apply for as many scholarships and funding opportunities as possible. For example, there are many scholarships available to cover travel and other expenses for conferences, internships and exchanges. Even if these scholarships are small, there are very few reasons not to apply, and their impact can be significant for your CV. At first you may have to submit several applications to receive just one award, but after you have won a couple of scholarships and gathered some experience, you will find that success attracts more success.

Dare to ask

In my experience, there is a fundamental rule for a successful academic career: If you want something, ask for it. Being proactive and intelligently asking for what you want will help you throughout your professional life. For example, if you are interested in an internship, invest time and effort in writing a good and specific application letter, ask for help from someone who has already written successful applications, and apply even if no positions are advertised. The worst that can happen is that you do not get it.

The same applies if you want to collaborate with a research group, visit a conference or attend a summer school. If you do your homework and present legitimate reasons why you want to do it and how it will benefit your career or research, then do not be afraid to ask. You should be mentally prepared to have your request denied, but even then, the feedback and practice you receive will be valuable for the future.

While grades are certainly important, combining them with other types of experience will strengthen your CV and will help you get the right graduate position and succeed in academia. You can also take advantage of these opportunities without outstanding grades if you start small and apply often. The more you apply, the easier it will become.

Christian Reimer completed his German Diplom in Physics (equivalent to a M.Sc.) at the Karlsruhe Institute of Technology, Germany. During his studies, he participated in exchanges, research projects and internships at Draeger Inc., Germany; Heriot-Watt University, Scotland; the University of St Andrews, Scotland; Surrey University, England; the University of Glasgow, Scotland; and the University of Sydney, Australia. He is currently writing his Ph.D. at the Institut National de la Recherche Scientifique (INRS, http://www.uop.ca/), Canada, supported by a Vanier Canada Graduate Scholarship (www.vanier.gc.ca).

 

Academic careers, Career, Communication skills, Conferences, Graduate school, International careers, Internships, Job Search , , , , , , , ,

How to Build Your Online Brand Using LinkedIn

12. November 2013

Lauren Celano

This post is based on content that has already appeared on the Propel Careers website and BioCareers.com. It is reproduced here with the author’s kind permission.
 
Your online personal brand—the way that you portray yourself on the internet and how others perceive you—is very important for networking and job searching. Even if you are not currently looking for a job, you can use social media sites like LinkedIn to your advantage. Below are a few examples of how developing your LinkedIn profile can help you progress in your career.

Networking

After meeting new colleagues at a networking event, you probably follow up with a LinkedIn request. When someone clicks on your profile, what will they see? Will they only see your job titles, or something more descriptive, like details about what you have done in each of your positions? Will they see a photograph or a blank space where your profile picture should be? Will they see organizations that you belong to and articles that you have published, or has this information been left out entirely?

When people look at a LindedIn profile, they like to see a professional profile picture (so that they can figure out if they remember you), along with details about your background, experience and education. If you have a nicely filled out profile, then it shows that you are serious about your professional persona and by extension, your career.

Informational interviews

If you ask for an informational interview, the person you ask will almost always look at your LinkedIn profile before speaking with you, even if you send them your resume. They want to learn more about you and also find out if you happen to have any connections in common. Having some background and additional details about you will help them provide the most useful and relevant information during the interview.

Job interviews

If you are actively interviewing for a new job, it’s also extremely likely that the people interviewing you will look up your LinkedIn profile. As in the previous example, if your profile does not have a lot of detail, then it isn’t helpful to the interviewer. You will have missed an opportunity to showcase yourself early on and leave a positive impression before the interview even starts.
 
Recruiter searches

Recruiters, either internal or external to a company, routinely search LinkedIn to identify individuals who could be good matches for jobs they are working to fill. They search using keywords as well as title, company, education, etc. If your profile isn’t complete, then you won't be easily picked up by their searches. Even if they do manage to find you, without important information in your profile, recruiters may not contact you since they won't be sure if your skills and experience are relevant to the position.

In today's web- based world, information is everywhere. The way people brand themselves online matters more than you might think. You can give yourself an advantage by spending some time to ensure that your LinkedIn information is complete and up-to-date. Good luck building out your profile—the effort will go a long way!

Lauren Celano (lauren@propelcareers.com) is the co-founder and CEO of Propel Careers, a life science search and career development firm focused on connecting talented individuals with entrepreneurial life sciences companies.

 

Career, Communication skills, Job Search , , , , , , ,

Career Reflections: Advice from Halvar Trodahl

5. November 2013

OPN spoke with Halvar Trodahl, a senior associate at McKinsey & Company, a global management consulting firm, to get his perspective on working as a consultant with a Ph.D. in physics.

What is your current role, and what are your day-to-day responsibilities?

As an associate at McKinsey & Company, I do project-based work with a small team of consultants to help our clients solve their toughest challenges. These challenges can range from determining strategic direction and market response to optimizing operations and developing business technology implementation. On a day-to-day basis, this means working closely with our McKinsey team as well as the client team to help build a deep understanding of the problem, the potential solutions, and the ability of our clients to succeed in tackling this and future challenges.

We work with leading organizations across the private, public and social sectors to increase their capabilities and leadership skills at every level and every opportunity. We do this to help build internal support, get to real issues, and reach practical recommendations.

What path did you take to get to your current position?

As I worked toward my Ph.D., I explored roles outside of my academic discipline in order to understand in which direction I wanted my career to move after graduate school. These explorations included teaching in areas outside of the physical sciences and taking on leadership positions in student organizations.

How do you feel that your science background has been helpful in your career?

I like to distinguish between the content knowledge and process knowledge that I developed during graduate school. Of these, my process knowledge is something I constantly draw on in my current work. The primary example of this is problem solving. As a Ph.D. student I honed my ability to take a complex problem, break it into its constituent parts, solve these piece by piece through hypothesis formulation and data analysis, and pull these together to form a coherent and holistic story. This process is something I use on a daily basis in my work as a consultant. On the other hand, I typically don't use, or expect to use, the content knowledge that I developed in my studies (e.g., quantum mechanics, nano-fabrication).

Is there anything that you wish you had done differently in your own education or career?

I would have spent more time exploring opportunities outside of physics during graduate school. In particular, I would have worked with student and university organizations early on so as to explicitly develop my leadership capabilities. I found these types of experiences very influential and wish I had pushed myself to have them from day one.

What one piece of advice would you give to someone who wants to follow a similar career path?

Explore career and extracurricular activities broadly and as early as possible. Having a range of experiences will help develop a baseline by which you can better understand which career options you are most interested in pursuing. Additionally, these experiences will arm you with a set of valuable tools that can be applied regardless of which path you choose to follow.

Halvar Trodahl is a senior associate at McKinsey & Company. Halvar joined McKinsey in 2012 after completing a Ph.D. in physics at Harvard University. Originally from New Zealand, he completed undergraduate degrees in science and business at Victoria University of Wellington. Halvar taught in a variety of disciplines throughout his academic career, ranging from global health to management theory.

 

Career, Communication skills, Graduate school, Job Search, Nontraditional science careers , , , , , , ,

How to Plan a Vacation—and Your Career

23. October 2013

Lisa Balbes

This post was adapted from content on the Career blog of the American Chemical Society (ACS) with the kind permission of ACS and the author.

I recently took a big family vacation, which required a lot of planning, organization and communication. As I thought about how we prepared for and experienced the trip, it occurred to me that this process parallels the career transition process.

Have discussions with interested parties.
When we decided to take a trip, we started by gathering everyone involved and talking about where we wanted to go. Before long, we had agreed to a basic itinerary. In the same way, when you’re thinking about the next phase of your career, you want to start by discussing various options with other interested parties. You may have a general idea of where you want to go next, but it will be modified by input from others: a spouse who can’t relocate, a desire for more or less travel, etc. Eventually, you will come to an agreement about what is required in your next professional destination.

Do the research.
Once we had our list of destinations, we obtained as much information as possible about each one. As a result, we added some things to our itinerary and deleted others. Learning about our destinations, their history and current offerings let us know what to expect and allowed us to enjoy the actual visit more. Similarly, researching prospective career options will reveal hidden aspects that will make them more or less attractive to you. The more you learn about a new field or position, the better you will be able to determine if that path is right for you.

We talked to people who had recently visited these locations, as well as those who currently lived there. When researching new career options, talk to people who have been in the field for a long time, as well as individuals who have just moved into the area. Both novices and experts have useful information that cannot be found in a printed publication.

Think about what you’ll need.
Before we could leave on the trip, we had to think about what we would need for the journey. Some things we already had, but others we had to go out and find. Similarly, a new job or career path may require new skills, which you will have to acquire through education or experience.

Stay flexible.
Once on the trip, we mostly followed our itinerary. However, we had purposely left some time unscheduled. An advertisement we saw while traveling made us aware of a new attraction, and we used one of the gaps in our schedule to visit it. That detour turned out to be one of the high points of the vacation for everyone! Just like in your career path, taking advantage of an unexpected opportunity can lead you in a direction that you never knew you would love. You should always be on the lookout for new professional experiences, and don’t be afraid to take a chance and try something different.

Learn from your experience.
Now that we‘re back home, the only thing left to do is sort through the photographs and put them neatly into a scrapbook for whenever we want to revisit our adventure. The sorting and reflecting is important, as it allows us to look back at the experience and learn from it for the next time. When you move on to a new stage in your career, take time to review the highlights and lowlights of the previous stage, or even your entire career—maybe while you’re updating your resume. Reflecting on your professional journey to date can provide valuable insights and prepare you to make more informed decisions about your next destination—be it vocational or vacational.

This article was written by Lisa M. Balbes, Ph.D. of Balbes Consultants LLC. Lisa is a freelance technical writer/editor and author of: “Nontraditional Careers for Chemists: New Formulas for Chemistry Careers,” published by Oxford University Press.

Career, Communication skills, Job Search , , , , ,

Want to be A Professional Scientist? Join the Facebook Group

9. October 2013

Marc Kuchner

This post is adapted from content that first appeared on the Nature blog with the kind permission of the author.

 Planetary scientist Heidi Hammel was at the telescope when Facebook alerted her to an important new target: a comet had just crashed into Jupiter. She said, “I learned about one of the impacts on Jupiter via Facebook, and we were able to do immediate follow-up.” It is no secret that, scientists are increasingly using social media not just for outreach or for fun, but to do real, ground breaking, earth-shattering science.
 
There are many websites devoted to science news and amateur science—but where do scientists go online to interact with their colleagues professionally? I asked my colleagues on the Marketing for Scientists Facebook group (mostly astronomers) to share their social networking advice. I think their answers point to a fascinating shift in the social fabric of the scientific community.
 
Use Facebook as a forum for scientific debate.
If you have a lot of Facebook friends, you can have professional scientific discussions right on your wall. Angela Speck told me, “Since a significant fraction of my friends are scientists they do respond to science questions. And then the ensuing wall discussion is like a chat over lunch.” Keep in mind that it takes time and effort to build that long list of followers or friends, and then more effort to keep up with them and sort through their status updates, so that tactic won’t necessarily be effective for everyone.
 
Join Professional Facebook or LinkedIn Groups.
Instead of building large contact lists themselves, more and more scientists are working with colleagues through Facebook groups. For example, Adam Burgasser told me, “Our ‘Low Mass Stars and Brown Dwarfs’ group has been a great place to post papers, promote astro apps, announce conferences, ask about pesky references etc.” Joining such a group is like instantly acquiring hundreds or thousands of high-powered new friends and followers.
 
LinkedIn groups are also a fertile home for scientific research. As Mark Eisner said, “In my field of hydrogeology, or more generally environmental consulting, I belong to 50. So much I cannot keep up.” These groups are a great forum for scientific discussion and career networking in particular.

Facebook and LinkedIn groups have become new incubators for scientific progress, providing important virtual places for scientists to work and to mingle. The trouble is that there’s no good directory of these groups of professional scientists on social networks. The most reliable way to find the professional Facebook groups for scientists seems to be to “friend” lots of colleagues whose interests overlap with yours, and look at their Facebook pages to see what groups they belong to. Then you have to ask permission to join. Otherwise, you need to start your own group and hope one doesn’t exist already for the topic you chose.

Perhaps one day, an organization like OSA or the American Association for the Advancement of Science will maintain a directory of Facebook and LinkedIn groups where active professional scientific collaborations are taking place. Such a tool would help young scientists meet established scientists, and help established scientists move into new fields where they don’t already have contacts.
 
In the meantime, the rise of this informal network of professional scientist groups makes it clearer than ever: in science, it matters who your friends are.

Marc J. Kuchner (marc@marketingforscientists.com) is an astrophysicist at NASA, a country songwriter, and the author of the book Marketing for Scientists: How To Shine In Tough Times. His website can be found at http://www.marketingforscientists.com/.

Career, Communication skills , , , , , , , ,